(本小題滿分12分)
(1)(本小題滿分5分)選修4-2:矩陣與變換。已知矩陣,A的一個(gè)特征值,屬于λ的特征向量是,求矩陣A與其逆矩陣.
(2) (本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在曲線上求一點(diǎn),使它到直線的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
解:(1)①由,得,解得,…………………3分
A-1 =…………………5分
(2)直線的直角坐標(biāo)方程是
設(shè)所求的點(diǎn)為,則P到直線的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),則|PF1|+|PF2|(   )
A.小于10B.大于10C.不大于10D.不小于10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4—4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知直線l:rcos(q+)=,圓C:r=4cosq,求直線l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知直線的參數(shù)方程為t為參數(shù)),曲線C的極坐標(biāo)方程是以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn),直線與曲
C交于A,B兩點(diǎn).
(1)寫(xiě)出直線的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|·|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過(guò)點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn);
(1)若,求直線的傾斜角的取值范圍;
(2)求弦最短時(shí)直線的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(3, ),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
如圖,已知點(diǎn),,圓是以為直徑的圓,直線
為參數(shù)).

(Ⅰ)寫(xiě)出圓的普通方程并選取適當(dāng)?shù)膮?shù)改寫(xiě)為參數(shù)方程;
(Ⅱ)過(guò)原點(diǎn)作直線的垂線,垂足為,若動(dòng)點(diǎn)滿足,當(dāng)變化時(shí),求點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分) 點(diǎn),圓與橢圓有一個(gè)公共點(diǎn)分別是橢圓的左右焦點(diǎn),直線與圓相切.
(1)求的值;(2)求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)參數(shù)方程為參數(shù))化成普通方程為_(kāi)_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案