(本小題滿分13分)

平地上有一條水渠,其橫斷面是一段拋物線弧,如圖,已知渠寬為,渠深為6

(1)若渠中水深為4,求水面的寬,并計(jì)算水渠橫斷面上的過水面積;

(2)為了增大水渠的過水量,現(xiàn)要把這條水渠改挖(不能填土)成橫斷面為等腰梯形的水渠,使水渠的底面與地面平行(不改變渠深),要使所挖土的土方量最少,請你設(shè)計(jì)水渠改挖后的底寬,并求出這個(gè)底寬。

 

【答案】

 

解:(1)水渠橫斷面過水面積為;

(2)設(shè)計(jì)改挖后的水渠的底寬為時(shí),可使所挖土的土方量最少。

 

【解析】本試題以圓錐曲線為背景,結(jié)合了定積分的幾何意義,表示曲邊梯形的面積的,以及直線與拋物線相切的相關(guān)知識的綜合愚弄。

(1)利用建立直角坐標(biāo)系,然后設(shè)出方程和點(diǎn)的坐標(biāo),結(jié)合定積分的幾何意義表示出面積。

(2)分析為了使挖掉的土最少,等腰梯形的兩腰必須與拋物線相切,則需要結(jié)合導(dǎo)數(shù)的幾何意義來表示得到切線方程,從而表示梯形面積,求解得到最值。

解:(1)建立如圖的坐標(biāo)系,設(shè)拋物線的方程為,由已知在拋物線上,得,∴拋物線的方程為,令,得,即水面寬為8()。

∴水渠橫斷面過水面積為

(2)為了使挖掉的土最少,等腰梯形的兩腰必須與拋物線相切,如圖,

設(shè)切點(diǎn),則函數(shù)在點(diǎn)的切線方程為

,得;

∴此時(shí)梯形OABC的面積為

,

當(dāng)且僅當(dāng)時(shí),等號成立,此時(shí)

∴設(shè)計(jì)改挖后的水渠的底寬為時(shí),可使所挖土的土方量最少。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案