如圖長方體中,AB=AD=2,CC1=,則二面角C1—BD—C
的大小為(   )
A.300B.450C.600D.900
A

試題分析:取BD的中點E,連接C1E,CE,因為AB=AD=2,所以AC⊥BD,根據(jù)三垂線定理可知C1E⊥BD,所以∠C1EC為二面角C1-BD-C的平面角,所以CE=,而CC1=,所以tan∠C1EC=,所以二面角C1-BD-C的大小為30°,故答案為:30°。
點評:本題主要考查了二面角的平面角及求法,考查空間想象能力,邏輯思維能力,計算能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題11分)如圖,三棱錐C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分別是BC、AC的中點。

(1)求證:AC⊥BD;
(2)若CA = CB,求證:平面BCD⊥平面ABD
(3)在上找一點M,在AD上找點N,使平面MED//平面BFN,說明理由;并求出的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點.
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m、n是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,,則   ②若,,則
③若,,則  ④若, ,則
其中正確命題的序號是 (     )
A.①②B.②③C.③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖的多面體中,⊥平面,,,,,,,的中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在空間四邊形ABCD中,點E、H分別是邊AB、AD的中點,F(xiàn)、G分別是邊BC、CD上的點,且,則( 。

(A)EF與GH互相平行
(B)EF與GH異面
(C)EF與GH的交點M可能在直線AC上,也可能不在直線AC上
(D)EF與GH的交點M一定在直線AC上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD—A1B1C1D1中,若E是A1C1的中點,則直線CE垂直于(  )
A.ACB.BDC.A1DD.A1D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知正方體ABCD-A1B1C1D1,E、F分別是平面A1B1C1D1和ADD1A1的中心,則EF和CD所成的角是(  ).
A.60° B.45°C.30°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三個互不重合的平面,是一條直線,則下列命題中正確的是(   )
A.若的所成角相等,則B.若,則
C.若上有兩個點到的距離相等,則D.若,則

查看答案和解析>>

同步練習冊答案