【題目】南宋數(shù)學(xué)家秦九韶早在《數(shù)書(shū)九章》中就獨(dú)立創(chuàng)造了已知三角形三邊求其面積的公式:“以小斜冪并大斜冪,減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減之,以四約之,為實(shí),一為從隅,開(kāi)方得積.”(即:S= ,a>b>c),并舉例“問(wèn)沙田一段,有三斜(邊),其小斜一十三里,中斜一十四里,大斜一十五里,欲知為田幾何?”則該三角形田面積為
A. 82平方里 B. 84平方里
C. 85平方里 D. 83平方里
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求的極值;
(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實(shí)根”,其中, 為實(shí)常數(shù).
(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù), 為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù), 為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)镽的奇函數(shù)f(x)滿足f(4﹣x)+f(x)=0,當(dāng)﹣2<x<0時(shí),f(x)=2x , 則f(log220)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin2x+2 sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間 上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______.
【答案】
【解析】
首先研究函數(shù)和函數(shù)的性質(zhì),然后結(jié)合韋達(dá)定理和函數(shù)的性質(zhì)求解2g(x1)+g(x2)+g(x3)的取值范圍即可.
由題意可知:,
將對(duì)勾函數(shù)的圖象向右平移一個(gè)單位,再向上平移一個(gè)單位即可得到函數(shù)的圖象,其圖象如圖所示:
由可得,
據(jù)此可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
繪制函數(shù)圖象如圖所示:
則的最大值為,,
函數(shù)y=f(g(x))+a有三個(gè)不同的零點(diǎn),則,
令,則,
整理可得:,由韋達(dá)定理有:.
滿足題意時(shí),應(yīng)有:,,
故.
【點(diǎn)睛】
本題主要考查導(dǎo)數(shù)研究函數(shù)的性質(zhì),等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,復(fù)合函數(shù)的性質(zhì)及其應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列{}的前n項(xiàng)和為,且滿足2=+m(m∈R).
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{}滿足,求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且 =1.
(1)求角A;
(2)若a=4 ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有6個(gè)人排成一排照相,由于甲乙性格不合,所以要求甲乙不相鄰,丙最高,要求丙站在最中間的兩個(gè)位置中的一個(gè)位置上,則不同的站法有( )種.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2﹣ax,a∈R
(1)若f(x)在P(x0 , y0)(x∈[ ))處的切線方程為y=﹣2,求實(shí)數(shù)a的值;
(2)若x1 , x2(x1<x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),證明:f′( )<0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com