【題目】已知 ,則關于的方程,給出下列五個命題:①存在實數,使得該方程沒有實根;
②存在實數,使得該方程恰有個實根;
③存在實數,使得該方程恰有個不同實根;
④存在實數,使得該方程恰有個不同實根;
⑤存在實數,使得該方程恰有個不同實根.
其中正確的命題的個數是( )
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的奇函數,其中m是常數.
(Ⅰ)判斷f(x)的單調性,并用定義證明;
(Ⅱ)若對任意x∈[﹣3,1],有f(tx)+f(2t﹣1)≤0恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經過焦點,且與拋物線交于兩點、.
(1)求拋物線的標準方程及準線方程;
(2)若為銳角,作線段的中垂線交軸于點.證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數學屆的震動。在1859年的時候,德國數學家黎曼向科學院提交了題目為《論小于某值的素數個數》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數學家歐拉也曾研究過這個問題,并得到小于數字的素數個數大約可以表示為的結論。若根據歐拉得出的結論,估計1000以內的素數的個數為_________(素數即質數,,計算結果取整數)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
對定義在區(qū)間上的函數,若存在閉區(qū)間和常數,使得對任意的都有,且對任意的都有恒成立,則稱函數為區(qū)間上的“U型”函數。
(1)求證:函數是上的“U型”函數;
(2)設是(1)中的“U型”函數,若不等式對一切的恒成立,求實數的取值范圍;
(3)若函數是區(qū)間上的“U型”函數,求實數和的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為的函數是奇函數
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數在定義域上的單調性;
(Ⅲ)若對任意的,不等式恒成立,求實數的取值范圍;
(Ⅳ)設關于的函數有零點,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com