精英家教網 > 高中數學 > 題目詳情

【題目】已知圓的一條直徑是橢圓的長軸,過橢圓上一點的動直線與圓相交于點,弦的最小值為.

(1)求圓及橢圓的方程;

(2) 已知點是橢圓上的任意一點,點軸上的一定點,直線的方程為,若點到定直線的距離與到定點的距離之比為,求定點的坐標.

【答案】(1)圓的方程為,橢圓的方程為;(2) .

【解析】試題分析:(1)當時, 最小,根據垂徑定理求半徑,根據長軸得a,將點坐標代入橢圓方程解得b,(2)設,利用點到直線距離公式以及兩點間距離公式化簡條件得恒等式,根據恒等式成立條件解出

試題解析:(1)當時, 最小,因為,所以,

因為圓的一條直徑是橢圓的長軸,所以

又點在橢圓上,所以,

所以圓的方程為,橢圓的方程為

2)依題意設,則點到直線的距離

到點的距離為,故有

即得: ,

又點在橢圓上,則,因此有

恒成立,

所以,即定點的坐標為,即為橢圓的右焦點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線的參數方程為為參數),直線的極坐標方程為.

(1)將曲線的參數方程化為極坐標方程;

(2)由直線上一點向曲線引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過拋物線y2=4x的焦點F的弦長為36,求弦所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC—A1B1C1中,側面AA1B1B是正方形,AC丄側面AA1B1B,AC=AB,點E是B1C1的中點.

(Ⅰ)求證:C1A∥平面EBA1;

(Ⅱ)若EF丄BC1,垂足為F,求二面角B—AF—A1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修44:坐標系與參數方程]

在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),以平面直角坐標系的原點為極點,正半軸為極軸,取相同的長度單位建立極坐標系,曲線C的極坐標方程為.

(Ⅰ)求直線l和曲線C的直角坐標方程,并指明曲線C的形狀;

()設直線l與曲線C交于A,B兩點,O為坐標原點,且OA<|OB|,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:

分組

頻數

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間[15,20)內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數在區(qū)間[20,25)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,內角、所對的邊分別是、,不等式對一切實數恒成立.

1)求的取值范圍;

2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數是定義在上的不恒為零的函數,對于任意實數滿足: ,, 考查下列結論:① ;②為奇函數;③數列為等差數列;④數列為等比數列.

以上結論正確的是__________

查看答案和解析>>

同步練習冊答案