精英家教網 > 高中數學 > 題目詳情
現給出如下命題:
(1)若直線l與平面α內無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2;
(3)某種樂器發(fā)出的聲波可用函數y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數據-1,-1,0,1,1的標準差是
則其中正確命題的序號是( )
A.(1)、(4)
B.(1)、(3)
C.(2)、(3)、(4)
D.(3)、(4)
【答案】分析:(1)由線面垂直的定義可得:直線l⊥平面α或者直線l∥α,也可能相交.(2)根據復數的運算法則可得|z2|表示實數,而z2表示復數.(3)根據三角函數的模型有關定義可得:該聲波的頻率是200赫茲.(4)計算出它們的平均數為0,進而根據標準差的公式可得標準差是1.
解答:解:(1)若直線l與平面α內無窮多條直線都垂直,則由線面垂直的定義可得:直線l⊥平面α或者直線l∥α,也可能相交.所以(1)錯誤.
(2)根據復數的運算法則可得|z2|表示實數,而z2表示復數,所以(2)錯誤.
(3)某種樂器發(fā)出的聲波可用函數y=0.001sin400πt(t∈R+)來描述,則根據三角函數的模型有關定義可得:該聲波的頻率是200赫茲;所以(3)正確.
(4)樣本數據為:-1,-1,0,1,1,所以它們的平均數為0,進而根據標準差的公式可得標準差是.所以(4)正確.
故選D.
點評:解決此類問題的關鍵是熟練掌握有關的基礎知識,如平面位置關系,復數的運算法則,三角函數模型中的參數的物理意義與均值方差等知識點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

現給出如下命題:
(1)若直線l與平面α內無窮多條直線都垂直,則直線l⊥平面α;
(2)空間三點確定一個平面;
(3) 先后拋兩枚硬幣,用事件A表示“第一次拋出現正面向上”,用事件B表示“第二次拋出現反面向上”,則事件A和B相互獨立且P(AB)=P(A)P(B)=
1
2
×
1
2
=
1
4
;
(4)樣本數據-1,-1,0,1,1的標準差是1.
則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,如果對任意n∈N+都有
an+2-an+1an+1-an
=p(p為常數),則稱數列{an}為“等差比”數列,p叫數列{an}的“公差比”.現給出如下命題:
(1)等差比數列{an}的公差比p一定不為零;
(2)若數列{an}(n∈N+)是等比數列,則數列{an}一定是等差比數列;
(3)若等比數列{an}是等差比數列,則等比數列{an}的公比與公差比相等.
則正確命題的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

現給出如下命題:
(1)若直線l與平面α內無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2
(3)某種樂器發(fā)出的聲波可用函數y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數據-1,-1,0,1,1的標準差是
2
5
5

則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)一模)現給出如下命題:
(1)若直線l上有兩個點到平面α的距離相等,則直線l∥平面α;
(2)“平面β上有四個不共線的點到平面α的距離相等”的充要條件是“平面β∥平面α”;
(3)若一個球的表面積是108π,則它的體積V=108
3
π
;
(4)若從總體中隨機抽取的樣本為-2,3,-1,1,1,4,3,3,0,-1,則該總體均值的點估計值是0.9.
則其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)現給出如下命題:
(1)若某音叉發(fā)出的聲波可用函數y=0.002sin800πt(t∈R+)描述,其中t的單位是秒,則該聲波的頻率是400赫茲;
(2)在△ABC中,若c2=a2+b2+ab,則∠C=
π
3
;
(3)從一個總體中隨機抽取一個樣本容量為10的樣本:11,10,12,10,9,8,9,11,12,8,則該總體標準差的點估計值是
2
5
3

則其中正確命題的序號是( 。

查看答案和解析>>

同步練習冊答案