【題目】已知離心率為的橢圓焦點在軸上,且橢圓個頂點構成的四邊形面積為,過點的直線與橢圓相交于不同的兩點.

(1)求橢圓的方程;

(2)設為橢圓上一點,且為坐標原點).求當時,實數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)由離心率率與面積,可求得。(2)由(1)橢圓方程為,設直線的方程為,由直線橢圓方程組方程組,再由判別式, ,這兩個不等式可求得參數(shù)k的范圍,再由的坐標表示及點P在橢圓上,可求得與k的有關系,通過k的范圍求出的范圍。

試題解析:(1)設橢圓的方程為,由題意可知,得 ;

又頂點構成四邊形的是菱形,面積,所以, ,橢圓方程為.

(2)設直線的方程為, , ,

的方程為時, ,與題意不符.

的方程為時,由題設可得、的坐標是方程組的解.

消去,所以,即,

, , ,

因為 ,所以

解得,所以.

因為,即

所以當時,由,得, ,

上述方程無解,所以此時符合條件的直線不存在:

時, , ,

因為點在橢圓上,所以,

化簡得,因為,所以,則.

綜上,實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標中xOy,圓C1x2+y2=8,圓C2x2+y2=18,點M1,0),動點AB分別在圓C1和圓C2上,滿足,則的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點B,C上的不同于A的兩點,且點B,C關于原點對稱,直線ABAC分別交直線l于點E,F.記直線的斜率分別為

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷的單調性并寫出證明過程;

2)當時,關于x的方程在區(qū)間上有唯一實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是公差為的等差數(shù)列,是公比為)的等比數(shù)列,記.

1)令,求證:數(shù)列為等比數(shù)列;

2)若,,數(shù)列2項和為14,前8項和為857,求數(shù)列通項公式;

3)在(2)的條件下,問:數(shù)列中是否存在四項、成等差數(shù)列?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O內一點,若分別滿足①;②;③;④(其中中,角所對的邊).O依次是的( )

A.內心、重心、垂心、外心B.外心、垂心、重心、內心

C.外心、內心、重心、垂心D.內心、垂心、外心、重心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:m為正整數(shù)),,若,則m所有可能的取值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等比數(shù)列{an}的公比為q,其前n項之積為Tn,并且滿足條件:a1>1,a2 016a2 017>1, .給出下列結論:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是數(shù)列{Tn}中的最大項;(4)使Tn>1成立的最大正整數(shù)n為4 031.其中正確的結論為(  )

A. (2)(3) B. (1)(3)

C. (1)(4) D. (2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BEAF,BCADAFABBC=2,AD=1.

(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;

(2)求二面角FCDA的余弦值.

查看答案和解析>>

同步練習冊答案