【題目】已知函數(shù)的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),

i)求曲線在點(diǎn)處的切線方程;

ii)求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)當(dāng)時(shí),求證:對(duì)任意的,且,有

【答案】(Ⅰ)(i;(ii的極小值為,無極大值;(Ⅱ)證明見解析.

【解析】

() (i)首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)數(shù)的幾何意義求解切線方程即可;

(ii)首先求得的解析式,然后利用導(dǎo)函數(shù)與原函數(shù)的關(guān)系討論函數(shù)的單調(diào)性和函數(shù)的極值即可;

)首先確定導(dǎo)函數(shù)的解析式,然后令,將原問題轉(zhuǎn)化為與有關(guān)的函數(shù),然后構(gòu)造新函數(shù),利用新函數(shù)的性質(zhì)即可證得題中的結(jié)論.

() (i) 當(dāng)k=6時(shí),,.可得,

所以曲線在點(diǎn)處的切線方程為,即.

(ii) 依題意,.

從而可得,

整理可得:,

,解得.

當(dāng)x變化時(shí),的變化情況如下表:

單調(diào)遞減

極小值

單調(diào)遞增

所以,函數(shù)g(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)

g(x)的極小值為g(1)=1,無極大值.

)證明:由,得.

對(duì)任意的,且,令,則

.

.

當(dāng)x>1時(shí),

由此可得單調(diào)遞增,所以當(dāng)t>1時(shí),,即.

因?yàn)?/span>,,

所以

.

()(ii)可知,當(dāng)時(shí),,即

由①②③可得.

所以,當(dāng)時(shí),任意的,且,有

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性

(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①;②;③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題目.

在△中,內(nèi)角A,BC所對(duì)的邊分別為.且滿足_________.

1)求;

2)已知,△的外接圓半徑為,求△的邊AB上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,.

(Ⅰ)若點(diǎn)的中點(diǎn),求證:∥平面

(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實(shí)數(shù)的值;

若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

是函數(shù)的兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為加強(qiáng)對(duì)銷售員的考核與管理,從銷售部門隨機(jī)抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.353.35,3.383.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.563.57,3.59,3.60,3.643.64,3.67,3.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對(duì)該銷售小組給予獎(jiǎng)勵(lì),否則不予獎(jiǎng)勵(lì).試判斷該公司是否需要對(duì)抽取的銷售小組發(fā)放獎(jiǎng)勵(lì);

(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請(qǐng)專業(yè)機(jī)構(gòu)對(duì)這5名銷售員的月均銷售額逐一進(jìn)行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)量是企業(yè)的生命線,某企業(yè)在一個(gè)批次產(chǎn)品中隨機(jī)抽檢件,并按質(zhì)量指標(biāo)值進(jìn)行統(tǒng)計(jì)分析,得到表格如表:

質(zhì)量指標(biāo)值

等級(jí)

頻數(shù)

頻率

三等品

10

0.1

二等品

30

一等品

0.4

特等品

20

0.2

合計(jì)

1

1)求,;

2)從質(zhì)量指標(biāo)值在的產(chǎn)品中,按照等級(jí)分層抽樣抽取6件,再從這6件中隨機(jī)抽取2件,求至少有1件特等品被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;

2)若ln[e(x+1)]≥2- f(-x)對(duì)任意的x[0,+∞)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)對(duì)函數(shù)進(jìn)行研究后,得出以下結(jié)論,其中正確的有(

A.函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱

B.對(duì)定義域中的任意實(shí)數(shù)的值,恒有成立

C.函數(shù)的圖象與軸有無窮多個(gè)交點(diǎn),且每相鄰兩交點(diǎn)間距離相等

D.對(duì)任意常數(shù),存在常數(shù),使函數(shù)上單調(diào)遞減,且

查看答案和解析>>

同步練習(xí)冊答案