4.已知t=2,執(zhí)行如圖的程序框圖,輸出S的值為(  )
A.1020B.1024C.2044D.4092

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算變量S的值并輸出,模擬程序的運(yùn)行,對程序運(yùn)行過程中各變量的值進(jìn)行分析,不難得到輸出結(jié)果.

解答 解:模擬程序的運(yùn)行,可得
n=2,S=0
不滿足條件n>10,第1次執(zhí)行循環(huán)體,S=22=4,n=3
不滿足條件n>10,第2次執(zhí)行循環(huán)體,S=22+23=12,n=4

不滿足條件n>10,第9次執(zhí)行循環(huán)體,S=22+23+…+210=$\frac{4(1-{2}^{9})}{1-2}$=4(29-1)=2044,n=11
滿足條件n>10,退出循環(huán),輸出S=2044.
故選:C.

點(diǎn)評 根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥2}\\{3x-y≤6}\end{array}\right.$,所表示的可行域的面積是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(m,n-1),$\overrightarrow$=(1,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則mn的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知如圖所示的程序框圖,則輸出的結(jié)果是(  ) 
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}滿足a1=3,2(n+1)an-nan+1=2n+4,數(shù)列{bn}滿足bn=$\frac{{2}^{n-1}}{{a}_{n}-2}$,n∈N*
(1)證明:{$\frac{{a}_{n}-2}{n}$}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{2}$≤bn+1+bn+2+…+b2n≤$\frac{5}{6}$-$\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,下列有關(guān)等邊三角形的四項(xiàng)敘述:
①若$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$,則△ABC是等邊三角形
②若$\frac{a}{cosA}$=$\frac{cosB}$=$\frac{c}{cosC}$,則△ABC是等邊三角形
③若$\frac{a}{tanA}$=$\frac{tanB}$=$\frac{c}{tanC}$,則△ABC是等邊三角形
④若$\frac{a}{A}$=$\frac{B}$=$\frac{c}{C}$,則△ABC是等邊三角形
其中,正確敘述的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知z1=1+i(其中i為虛數(shù)單位),設(shè)$\overline{{z}_{1}}$為復(fù)數(shù)z1的共軛復(fù)數(shù),$\frac{1}{{z}_{2}}$=$\frac{1}{{z}_{1}}$+$\frac{1}{\overline{{z}_{1}}}$,則復(fù)數(shù)z2在復(fù)平面所對應(yīng)點(diǎn)的坐標(biāo)為( 。
A.(0,1)B.(1,0)C.(0,2)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\frac{lg(2-x)}{{\sqrt{x-1}}}$的定義域是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“$\frac{1}{2}$<2x<128”是“x2-5x-14<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案