(本小題滿分13分)已知點(diǎn)分別為橢圓的左、右焦點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),到焦點(diǎn)的距離的最大值為.
(1)求橢圓的方程。
(2)點(diǎn)的坐標(biāo)為,過點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn)。對于任意的是否為定值?若是求出這個(gè)定值;若不是說明理由。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,是半圓的直徑,是半圓(除端點(diǎn))上的任意一點(diǎn).在線段的延長線上取點(diǎn),使,試求動(dòng)點(diǎn)的軌跡方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且(),證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖所示,橢圓C: 的離心率,左焦點(diǎn)為右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)為.與軸不垂直的直線與橢圓C交于不同的兩點(diǎn)、,記直線、的斜率分別為、,且.
(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦 的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線在軸上的截距為,設(shè)直線交橢圓于兩個(gè)不同點(diǎn)、,
(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的焦點(diǎn)在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn).
(I)求橢圓的方程;
(II)直線與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點(diǎn)在軸的異側(cè),端點(diǎn)與、與的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號.
(Ⅰ)若弦所在直線斜率為,且弦的中點(diǎn)的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過定點(diǎn),試探究弦是否也必過某個(gè)定點(diǎn). 若有,請證明;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為.
①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com