7.已知極坐標的極點在平面直角坐標系的原點O處,極軸與x軸的非負半軸重合,且長度單位相同.直線的極坐標方程為ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若點P為曲線C:$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$,
(α為參數(shù))上的動點.
(1)試寫直線的直角坐標方程及曲線C的普通方程;
(2)求點P到直線距離的最大值.

分析 (1)利用三角函數(shù)的平方關(guān)系式,消去參數(shù),即可得到直角坐標方程.
(2)求出直線的直角坐標方程,通過直線與圓的位置關(guān)系,圓心到直線的距離求解最值即可

解答 解:(1)∵ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,
∴ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,
∴直線l的直角坐標方程為:y-$\sqrt{3}$x=2$\sqrt{3}$,即為y=$\sqrt{3}$x+2$\sqrt{3}$,
(2)曲線C:$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$,消去參數(shù)α可知曲線C的普通方程為:(x-2)2+y2=4.
∴由點P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.
圓心C到直線l的距離d=$\frac{|2\sqrt{3}-0+2\sqrt{3}|}{2}$=2+2$\sqrt{3}$,
∴點P到直線l的最大距離為2+2$\sqrt{3}$.

點評 本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的各項均為非零實數(shù),且對于任意的正整數(shù)n,都有(a1+a2+a3+…+an2=a13+a23+a33+…+an3
(1)寫出數(shù)列{an}的前三項a1,a2,a3(請寫出所有可能的結(jié)果);
(2)是否存在滿足條件的無窮數(shù)列{an},使得a2017=-2016?若存在,求出這樣的無窮數(shù)列的一個通項公式;若不存在,說明理由;
(3)記an點所有取值構(gòu)成的集合為An,求集合An中所有元素之和(結(jié)論不要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列不等式的解集.
(1)-2x2+x<-3
(2)$\frac{x+1}{x-2}$≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一條直線a上的3個點A、B、C到平面M的距離都為1,這條直線和平面的關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.135°的圓心角所對的弧長為3π,則圓的半徑是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}中,a2=5,前4項和S4=28.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z1和z2關(guān)于虛軸對稱且z1=2+i,那么z1z2等于( 。
A.-5B.5C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xlnx,(e=2.718…).
(1)設(shè)g(x)=f(x)+x2-2(e+1)x+6,
①記g(x)的導(dǎo)函數(shù)為g'(x),求g'(e);
②若方程g(x)-a=0有兩個不同實根,求實數(shù)a的取值范圍;
(2)若在[1,e]上存在一點x0使$m({f({x_0})-1})>x_0^2+1$成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則f(sinα)與f(cosβ)的大小關(guān)系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

同步練習(xí)冊答案