(本小題滿分12分)
已知函數(shù)是奇函數(shù):
(1)求實數(shù)和的值;
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.
(1);(2)見解析;(3).
解析試題分析:(Ⅰ)先根據(jù)f(1)=f(4)求出b的值;再結合f(x)+f(-x)=0對x≠0恒成立求出a的值即可;
(Ⅱ)直接按照單調(diào)性的證明過程來證即可;
(Ⅲ)先結合第二問的結論知道函數(shù)f(x)在(1,+∞)上遞減,進而得到函數(shù)的不等式,最后把兩個成立的范圍相結合即可求出結論.
(1)由定義易得:
(2)設,
即所以在上的單調(diào)遞減。
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.
由及為奇函數(shù)得:
因為,,且在區(qū)間上的單調(diào)遞減,
故任意的恒成立,故.
考點:本題主要是考查函數(shù)奇偶性與單調(diào)性的綜合.
點評:解決第一問的關鍵在于利用奇函數(shù)的定義得到f(x)+f(-x)=0對x≠0恒成立求出a的值.
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)
某市居民生活用水標準如下:
用水量t(單位:噸) | 每噸收費標準(單位:元) |
不超過2噸部分 | m |
超過2噸不超過4噸部分 | 3 |
超過4噸部分 | n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)某市“環(huán)保提案”對某處的環(huán)境狀況進行了實地調(diào)研,據(jù)測定,該處的污染指數(shù)與附近污染源的強度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距的,兩家化工廠(污染源)的污染強度分別為正數(shù),,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設.
(1) 試將表示為的函數(shù);
(2) 若時,在處取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應定為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知二次函數(shù)的圖像過點,且,
(Ⅰ)求的解析式;
(Ⅱ)若數(shù)列滿足,且,求數(shù)列的通項公式;
(Ⅲ)記,數(shù)列的前項和,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12)
為了綠化城市,準備在如圖所示的區(qū)域內(nèi)修建一個矩形的草坪,并建立如圖平面直角坐標系,且,,另外的內(nèi)部有一文物保護區(qū)不能占用,經(jīng)測量,, ,.
(1)求直線的方程;
(2)應如何設計才能使草坪的占地面積最大?并求最大面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分) 已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,對,恒成立,求實數(shù)的取值范圍;
(3)當且時,試比較的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),,
(1) 判斷函數(shù)的奇偶性,并證明;
(2) 判斷的單調(diào)性,并說明理由。(不需要嚴格的定義證明,只要說出理由即可)
(3) 若,方程是否有根?如果有根,請求出一個長度為1的區(qū)間,使;如果沒有,請說明理由。(注:區(qū)間的長度=)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com