【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.

1)若,,求集合;

2)若,求使得集合恰有兩個(gè)元素;

3)若集合恰有三個(gè)元素,,T是不超過(guò)5的正整數(shù),求T的所有可能值,并寫(xiě)出與之相應(yīng)的一個(gè)等差數(shù)列的通項(xiàng)公式及集合.

【答案】1;(2;(34,時(shí),,時(shí),,

【解析】

1)根據(jù)等差數(shù)列的通項(xiàng)公式寫(xiě)出,進(jìn)而求出,再根據(jù)周期性求解;(2)由集合的元素個(gè)數(shù),分析數(shù)列的周期,進(jìn)而可求得答案;(3)分別令,23,45進(jìn)行驗(yàn)證,判斷的可能取值,并寫(xiě)出與之相應(yīng)的一個(gè)等差數(shù)列的通項(xiàng)公式及集合

1等差數(shù)列的公差,,數(shù)列滿足,

集合

當(dāng),

所以集合,0,

2,數(shù)列滿足,集合恰好有兩個(gè)元素,如圖:

根據(jù)三角函數(shù)線,

等差數(shù)列的終邊落在軸的正負(fù)半軸上時(shí),集合恰好有兩個(gè)元素,此時(shí),

終邊落在上,要使得集合恰好有兩個(gè)元素,可以使的終邊關(guān)于軸對(duì)稱,如圖,此時(shí),

綜上,或者

3當(dāng)時(shí),,集合,,符合題意.

與之相應(yīng)的一個(gè)等差數(shù)列的通項(xiàng)公式為,此時(shí).

當(dāng)時(shí),,,或者,

等差數(shù)列的公差,,故,,又,2

當(dāng)時(shí)滿足條件,此時(shí),1,

與之相應(yīng)的一個(gè)等差數(shù)列的通項(xiàng)公式為,此時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售額(單位:萬(wàn)元)的影響,對(duì)近6年的年宣傳費(fèi)和年銷售額數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)和年銷售額具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

(I)根據(jù)表中數(shù)據(jù)建立關(guān)于的回歸方程;

(Ⅱ)利用(I)中的回歸方程預(yù)測(cè)該公司如果對(duì)該產(chǎn)品的宜傳費(fèi)支出為10萬(wàn)元時(shí)銷售額是萬(wàn)元,該公司計(jì)劃從10名中層管理人員中挑選3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為且隨機(jī)變量,求的概率分布列與數(shù)學(xué)期望.

附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】米勒問(wèn)題,是指德國(guó)數(shù)學(xué)家米勒1471年向諾德?tīng)柦淌谔岢龅挠腥?wèn)題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(zhǎng)(即可見(jiàn)角最大?)米勒問(wèn)題的數(shù)學(xué)模型如下:如圖,設(shè) 是銳角的一邊上的兩定點(diǎn),點(diǎn)是邊邊上的一動(dòng)點(diǎn),則當(dāng)且僅當(dāng)的外接圓與邊相切時(shí),最大.若,點(diǎn)軸上,則當(dāng)最大時(shí),點(diǎn)的坐標(biāo)為( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),.

1)若上單調(diào)遞增,求正數(shù)的最大值;

2)若函數(shù)內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)利用五點(diǎn)法畫(huà)出函數(shù)在一個(gè)周期上的簡(jiǎn)圖;

(2)先把的圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度,得到的圖象;然后把的圖

象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變),得到的圖象;再把的圖象

上所有點(diǎn)的縱坐標(biāo)縮短到原來(lái)的(橫坐標(biāo)不變),得到的圖象,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù),滿足約束條件,的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來(lái),在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ),“”指考生根據(jù)本人興趣特長(zhǎng)和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門(mén)作為選考科目,其中語(yǔ)、數(shù)、外三門(mén)課各占分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績(jī)),已知這次摸底考試中的物理成績(jī)(滿分分)頻率分布直方圖,化學(xué)成績(jī)(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績(jī)的最后得分;

(2)若小明的化學(xué)成績(jī)最后得分為分,求小明的原始成績(jī)的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案