【題目】正方體ABCD﹣A1B1C1D1的棱和六個面的對角線共24條,其中與體對角線AC1垂直的有條.

【答案】6
【解析】解:如圖,連接AC,則BD⊥AC.

在正方體ABCD﹣AA1B1C1D1中,

∵C1C⊥平面BCD,

BD平面BCD,

∴C1C⊥BD,

又AC∩CC1=C,

∴BD⊥平面ACC1,

∵AC1平面ACC1,

∴AC1⊥BD.

同樣A1B,A1D,B1D1,CD1,B1C都與AC1垂直.

正方體ABCD﹣A1B1C1D1的棱中沒有與AC1垂直的棱,

故正方體ABCD﹣A1B1C1D1的棱和六個面的對角線共24條,其中與體對角線AC1垂直的有6條.

所以答案是:6.

【考點精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點A、B,使得△OAB是以原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,則實數(shù)a的取值范圍是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對稱點.若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對稱點,則實數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知點P(2,0),曲線C的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的普通方程和極坐標(biāo)方程;
(Ⅱ)過點P且傾斜角為 的直線l交曲線C于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,短軸長為2. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若圓O:x2+y2=1的切線l與曲線E相交于A、B兩點,線段AB的中點為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的直角頂點A在y軸上,點B(1,0),D為斜邊BC的中點,且AD平行于x軸.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線Γ,直線BC與Γ的另一個交點為E,以CE為直徑的圓交y軸于點M,N,記圓心為P,∠MPN=α,求α的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點,E為AD的中點.將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A﹣EF﹣D與二面角B﹣CD﹣E的大小都等于90°,得到如圖2所示的多面體.
(1)在多面體中,求證:A,B,D,E四點共同面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:

B餐廳分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35


(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是海面上兩個固定觀測站,現(xiàn)位于B點南偏東45°且相距 海里的D處有一艘輪船發(fā)出求救信號.此時在A處觀測到D位于其北偏東30°處,位于A北偏西30°且與A相距 海里的C點的救援船立即前往營救,其航行速度為30海里/小時,該救援船到達(dá)D點需要多長時間?

查看答案和解析>>

同步練習(xí)冊答案