設(shè)點(diǎn)M、N分別是不等邊△ABC的重心與外心,已知A(0,1),B(0,-1),且
MN
AB

(1)求動(dòng)點(diǎn)C的軌跡E;
(2)(理科)若直線(xiàn)y=kx+b與曲線(xiàn)E交于不同的兩點(diǎn)P、Q,且滿(mǎn)足
OP
OQ
=0,求實(shí)數(shù)b的取值范圍.
(文科)若直線(xiàn)y=x+b與曲線(xiàn)E交于不同的兩點(diǎn)P、Q,且滿(mǎn)足
OP
OQ
=0,求實(shí)數(shù)b的取值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:計(jì)算題,平面向量及應(yīng)用,直線(xiàn)與圓,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:(1)設(shè)點(diǎn)C(x,y ),運(yùn)用重心坐標(biāo)公式可得點(diǎn)M,由
MN
AB
,可得 MN∥AB,故N的橫坐標(biāo)等于
x
3
,又N在AB的中垂線(xiàn)上,故縱坐標(biāo)等于0.由于NA=NC,可得方程,化簡(jiǎn)可得軌跡方程,從而得到軌跡.
(2)(理科)把直線(xiàn)y=kx+b代入軌跡E的方程化簡(jiǎn),再由韋達(dá)定理,結(jié)合向量數(shù)量積為0,化簡(jiǎn)整理,即可得到b的取值范圍;
(文科)把直線(xiàn)y=x+b代入軌跡E的方程化簡(jiǎn),再由韋達(dá)定理和判別式大于0,結(jié)合向量數(shù)量積為0,化簡(jiǎn)整理,即可得到b的取值.
解答: 解:(1)設(shè)點(diǎn)C(x,y ),則點(diǎn)M(
0+0+x
3
,
1-1+y
3
 ),
即點(diǎn)M(
x
3
y
3
 ),
MN
=λ
AB
,可得 MN∥AB,故N的橫坐標(biāo)等于
x
3
,
又N在AB的中垂線(xiàn)上,故縱坐標(biāo)等于0.
由于N是不等邊△ABC的外心,∴NA=NC,
(
x
3
)2+1
=
(
x
3
-x)2+y2

化簡(jiǎn)可得,
x2
3
+y2=1,xy≠0,
故動(dòng)點(diǎn)C的軌跡E是焦點(diǎn)在x軸上的標(biāo)準(zhǔn)位置的一個(gè)橢圓,去掉其頂點(diǎn).
(2)(理科)將直線(xiàn)y=kx+b代入方程
x2
3
+y2=1(xy≠0),化簡(jiǎn)可得,
(1+3k2)x2+6kbx+3b2-3=0,由題意可得,
b≠0,b≠±1且△=(6kb)2-4(1+3k2)(3b2-3)>0,
化簡(jiǎn)得,b≠0,b≠±1且b2-1<3k2,
設(shè)P(x1,y1),Q(x2,y2),
OP
OQ
=0,可得,
x1•x2+(kx1+b)•(kx2+b)=(1+k2)x1•x2+kb(x1+x2)+b2=0.
x1+x2=-
6kb
1+3k2
,x1x2=
3b2-3
1+3k2
,
即有(1+k2)•
3b2-3
1+3k2
+kb•(-
6kb
1+3k2
)+b2=0
解得,3k2=4b2-3,
則b≠0,b≠±1,4b2-3≥0,4b2-3>b2-1,
解得,b≤-
3
2
或b≥
3
2
且b≠±1.
(文科)把直線(xiàn)y=x+b代入軌跡E的方程化簡(jiǎn)可得  4x2+6bx+3b2-3=0.
由題意可得,b≠0,b≠±1,
且△=36b2-16( 3b2-3)>0,解得,b≠0,b≠±1且b2<4,
x1+x2=-
3b
2
,x1•x2=
3b2-3
4

OP
OQ
=0,可得,
x1•x2+(x1+b)•(x2+b)=2x1•x2+b(x1+x2)+b2=0.
∴2•
3b2-3
4
+b•(
-3b
2
)+b2=0,解得 b2=
3
2
,
∴b=±
6
2
點(diǎn)評(píng):本題考查點(diǎn)的軌跡方程的求法,直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系,判斷軌跡E的形狀,是解題的易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=2sin(2x-
π
6
),求g(x)在[-
π
2
,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某客運(yùn)部門(mén)規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過(guò)25kg按0.5元/kg收費(fèi),超過(guò)25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如右圖所示,則①②處應(yīng)填( 。
A、y=0.8x    y=0.5x
B、y=0.5x    y=0.8x
C、y=25×0.5+(x-25)×0.8    y=0.5x
D、y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為a的正方形內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)落在該正方形的內(nèi)切圓內(nèi)部的概率為(  )
A、
π
4
B、
π
6
C、
2
π
D、
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F(xiàn)是PC的中點(diǎn),
(1)證明:平面PBD⊥平面PAC;
(2)求證:BF∥平面ACE;
(3)求三棱錐D-BCF的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|x<2012},N={x|0<x≤2012},則M∪N=( 。
A、M
B、N
C、{x|x≤2012}
D、{x|0<x<2012}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|log2(6x+12)≥log2(x2+3x+2),x∈R},B={x|2 x2-m<4x,x∈R}
(1)當(dāng)m=3時(shí),求A∩(∁RB).
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1(n∈N*),則a4=( 。
A、8B、16C、31D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x0是函數(shù)f(x)=2x-x-3的零點(diǎn),則[x0](表示不超過(guò)x0的最大整數(shù))的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案