已知雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線均與圓x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)與圓x2+y2-6x+5=0的圓心重合,則雙曲線的方程是( 。
A.
x2
5
-
y2
4
=1
B.
x2
4
-
y2
5
=1
C.
x2
6
-
y2
3
=1
D.
x2
3
-
y2
6
=1
∵圓C:x2+y2-6x+5=0的圓心C(3,0),半徑r=2
∴雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)坐標(biāo)為(3,0),
即c=3,∴a2+b2=9,①
∵雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的一條漸近線方程為bx-ay=0,
∴C到漸近線的距離等于半徑,即
3b
a2+b2
=2,②
由①②解得:a2=5,b2=4
∴該雙曲線的方程為
x2
5
-
y2
4
=1

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn)為F,過F且斜率為
3
的直線交C于A、B兩點(diǎn),若
AF
=4
FB
,則C的離心率為(  )
A.
6
5
B.
7
5
C.
5
8
D.
9
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
,F1
、F2分別為左、右焦點(diǎn),M為左準(zhǔn)線與漸近線在第二象限內(nèi)的交點(diǎn),且
F1M
.
F2M
=-
1
4

(I)求雙曲線的方程;
(II)設(shè)A(m,0)和B(
1
m
,0)
(0<m<1)是x軸上的兩點(diǎn).過點(diǎn)A作斜率不為0的直線l,使得l交雙曲線于C、D兩點(diǎn),作直線BC交雙曲線于另一點(diǎn)E.證明直線DE垂直于x軸.中心O為圓心,分別以a和b為半徑作大圓和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知以原點(diǎn)O為中心的雙曲線的一條準(zhǔn)線方程為x=
5
5
,離心率e=
5

(Ⅰ)求該雙曲線的方程;
(Ⅱ)如圖,點(diǎn)A的坐標(biāo)為(-
5
,0)
,B是圓x2+(y-
5
)2=1
上的點(diǎn),點(diǎn)M在雙曲線右支上,|MA|+|MB|的最小值,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)M(-3,0)、N(3,0)、B(1,0),動(dòng)圓C與直線MN切于點(diǎn)B,過M、N與圓C相切的兩直線相交于點(diǎn)P,則P點(diǎn)的軌跡方程為( 。
A.x2-
y2
8
=1(x<-1)
B.x2-
y2
8
=1(x>1)
C.x2+
y2
8
=1(x>0)
D.x2-
y2
10
=1(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線的離心率等于3,且與橢圓
x2
16
+
y2
7
=1
有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若一個(gè)橢圓與雙曲線x2-
y2
3
=1
焦點(diǎn)相同,且過點(diǎn)(-
3
,1).
(Ⅰ)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求這個(gè)橢圓的所有斜率為2的平行弦的中點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓與雙曲線且有相同的焦點(diǎn),求值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的離心率的取值范圍是              

查看答案和解析>>

同步練習(xí)冊(cè)答案