(本小題滿分15分)

如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及直線的交點從左到右的順序為A、BC、D,設(shè)

(Ⅰ)求的解析式;

(Ⅱ)求的最值.

 

【答案】

(Ⅰ)f(m)=m∈[2,5]

(Ⅱ)f(m)的最大值為,此時m=2;f(m)的最小值為,此時m=5

【解析】解  (Ⅰ)設(shè)橢圓的半長軸、半短軸及半焦距依次為a、b、c,則a2=m,b2=m-1,c2=a2b2=1

∴橢圓的焦點為F1(-1,0),F2(1,0) 

故直線的方程為y=x+1,又橢圓的準線方程為x,即xm 

A(-m,-m+1),D(m,m+1)

考慮方程組,消去y得  (m-1)x2+m(x+1)2=m(m-1)

整理得  (2m-1)x2+2mx+2mm2=0

Δ=4m2-4(2m-1)(2mm2)=8m(m-1)2

∵2≤m≤5,∴Δ>0恒成立,xB+xC= 

又∵AB、CD都在直線y=x+1上

∴|AB|=|xBxA|==(xBxA,|CD|=(xDxC)

∴||AB|-|CD||=|xBxA+xDxC|=|(xB+xC)-(xA+xD)|

又∵xA=-m, xD=m,∴xA+xD=0

∴||AB|-|CD||=|xB+xC=|= (2≤m≤5)

f(m)=,m∈[2,5] 

(Ⅱ)由f(m)=,可知f(m)= 

又2-≤2-≤2-,∴f(m)∈[

f(m)的最大值為,此時m=2;f(m)的最小值為,此時m=5 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試理數(shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案