設函數(shù)y=
16-x2
的定義域為A,關于x的不等式log22x+1<a的解集為B,且A∩B=A,則a的取值范圍是( 。
A、(-∞,3)
B、(0,3]
C、(5,+∞)
D、[5,+∞)
分析:先根據(jù)函數(shù)定義域?qū)懗黾螦,由對數(shù)性質(zhì)化簡集合B,由A∩B=A轉(zhuǎn)化為A⊆B,列出不等關系求解即可.
解答:做:
解:A={x|-4≤x≤4}
不等式log22x+1<a可化為:x+1<a.
x<a-1
∵A∩B=A
∴A⊆B
∴a-1>4,a>5.
則a的取值范圍是(5,+∞)
故選C.
點評:本題主要考查集合的子集運算,及集合關系中的參數(shù)取值問題、對數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

θ∈(0,
π
2
),且函數(shù)y=(sinθ)x2-6x+5
的最大值為16,則θ=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為R,f(1)=2,且對任意x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2),當x>0時,f(x)是增函數(shù),則函數(shù)y=-f2(x)在區(qū)間[-3,-2]上的最大值是
-16
-16

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆江蘇省泰州中學高三上學期期中考試數(shù)學 題型:解答題

(本題滿分16分)設函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤;
(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分16分)設函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=x2(1-x).

(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;

(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤;

(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由

 

查看答案和解析>>

同步練習冊答案