已知橢圓方程
x2
3
+
y2
4
=1
,那么它的焦距是( 。
A、1
B、2
C、
5
D、2
5
分析:由c2=4-3=1,知c=1,由此能求出它的焦距.
解答:解:∵c2=4-3=1,
∴c=1,
∴2c=2.
故選B.
點評:本題考查橢圓的簡單性質,解題時要注意公式的合理選用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
3
+
y2
4
=1
的焦點F與拋物線C:y2=2px(p>0)的焦點關于直線x-y=0對稱.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知定點A(a,b),B(-a,0)(ab≠0,b2≠4a),M是拋物線C上的點,設直線AM,BM與拋物線的另一交點為M1,M2.求證:當M點在拋物線上變動時(只要M1,M2存在且M1≠M2)直線M1M2恒過一定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網在平面直角坐標系xOy中,已知橢圓C:
x23
+y2=1
.如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于A,B兩點,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=-3于點D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點;
(ii)試問點B,G能否關于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓兩個焦點的坐標分別是(-1,0),(1,0),并且經過點(2,0),則它的標準方程是( 。
A、
x2
2
+
y2
3
=1
B、
x2
3
+
y2
2
=1
C、
x2
3
+
y2
4
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓方程
x2
3
+
y2
4
=1
,那么它的焦距是( 。
A.1B.2C.
5
D.2
5

查看答案和解析>>

同步練習冊答案