【題目】已知f(x)= x3﹣x2+ax+m,其中a>0,如果存在實數(shù)t,使f′(t)<0,則f′(t+2)f′( )的值( )
A.必為正數(shù)
B.必為負數(shù)
C.必為非負
D.必為非正
【答案】B
【解析】解:∵ ,∴f′(x)=x2﹣2x+a. ∵存在實數(shù)t,使f'(t)<0,a>0,∴t2﹣2t+a<0的解集不是空集,
∴△=4﹣4a>0,解得a<1,因此0<a<1.
令t2﹣2t+a=0,解得 ,
∴t2﹣2t+a<0的解集是{x|0< <2}.
∵f′(t+2)=(t+2)2﹣2(t+2)+a=t(t+2)+a,∴f′(t+2)>0;
∵ = = ,
∴ = = ≥0,
∴ ,
∴ <0,
故選B.
【考點精析】關于本題考查的基本求導法則,需要了解若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中…是然對數(shù)底數(shù).
(1)若函數(shù)有兩個不同的極值點, ,求實數(shù)的取值范圍;
(2)當時,求使不等式在一切實數(shù)上恒成立的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列4個函數(shù):① ;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在區(qū)間 上增函數(shù)且以π為周期的函數(shù)是(把所有符合條件的函數(shù)序列號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=a﹣ (a∈R).
(1)請你確定a的值,使f(x)為奇函數(shù);
(2)用單調性定義證明,無論a為何值,f(x)為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ ),x∈R的圖象,只需將函數(shù)y=sin2x,x∈R的圖象上所有的點( )
A.向左平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向右平行移動 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線 (t為參數(shù)), (θ為參數(shù)),
(1)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應的參數(shù)為 ,Q為C2上的動點,求PQ中點M到直線 (t為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N*),設bn= ,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,我國電子商務蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關管理部門推出了針對該網(wǎng)購平臺的商品和服務的評價系統(tǒng). 從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關系”?
對服務滿意 | 對服務不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設對商品和服務都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com