16.Sn是等差數(shù)列{an}的前n項(xiàng)和,若a3+a6+a9=60,則S11=( 。
A.220B.110C.55D.50

分析 由等差數(shù)列{an}的性質(zhì)可得:a3+a6+a9=60=3a6,解得a6.再利用求和公式即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì)可得:a3+a6+a9=60=3a6,解得a6=20.
則S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6=220.
故選:A.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式即可得出,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知α,β是兩個平面,直線l?α,則“α⊥β”是“l(fā)⊥β”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.統(tǒng)計(jì)5名職工的體重數(shù)據(jù)的莖葉圖如圖所示,則該樣本的方差為62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l:y=$\sqrt{3}$x+4,動圓O:x2+y2=r2(1<r<2),菱形ABCD的一個內(nèi)角為60°,頂點(diǎn)A,B在直線l上,頂點(diǎn)C,D在圓O上.當(dāng)r變化時,菱形ABCD的面積S的取值范圍是(0,$\frac{3\sqrt{3}}{2}$)∪($\frac{3\sqrt{3}}{2}$,6$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面α,β和直線m,給出條件:①m∥α;②m⊥α;③m?α;④α∥β,當(dāng)滿足條件②④時,有m⊥β.(填所選條件的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|•(x+1).
(1)將f(x)寫成分段函數(shù),并作出函數(shù)f(x)的圖象;
(2)根據(jù)函數(shù)的圖象寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓O:x2+y2=1,P為直線l:x=$\frac{4}{3}$上一點(diǎn).
(1)若點(diǎn)P在第一象限,且OP=$\frac{5}{3}$,求過點(diǎn)P圓O的切線方程;
(2)若存在過點(diǎn)P的直線交圓O于點(diǎn)A,B,且B恰為線段AP的中點(diǎn),求點(diǎn)P縱坐標(biāo)的取值范圍;
(3)設(shè)直線l動點(diǎn)Q,⊙Q與⊙O相外切,⊙Q交L于M、N兩點(diǎn),對于任意直徑MN,平面上是否存在不在直線L上的定點(diǎn)A,使得∠MAN為定值?若存在,直接寫出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在銳角△ABC中,A,B,C所對邊分別為a,b,c,且b2-a2=ac,則$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范圍為(  )
A.(1,+∞)B.(1,$\frac{2}{3}$$\sqrt{3}$)C.(1,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{2}{3}$$\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則它表面積是( 。
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

同步練習(xí)冊答案