(2013•河池模擬)定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=kx+b(k,b為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,則稱(chēng)g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).
現(xiàn)有如下函數(shù):
①f(x)=x3;
②f(x)=2-x;
f(x)=
lgx,x>0
0,x≤0
;
④f(x)=x+sinx.
則存在承托函數(shù)的f(x)的序號(hào)為
②④
②④
.(填入滿(mǎn)足題意的所有序號(hào))
分析:函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個(gè)承托函數(shù),即說(shuō)明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個(gè)交點(diǎn)),若函數(shù)的值域?yàn)镽,則顯然不存在承托函數(shù).
解答:解:函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個(gè)承托函數(shù),即說(shuō)明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個(gè)交點(diǎn))
①f(x)=x3的值域?yàn)镽,所以不存在函數(shù)g(x)=kx+b,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故不存在承托函數(shù);
②f(x)=2-x>0,所以y=A(A≤0)都是函數(shù)f(x)的承托函數(shù),故②存在承托函數(shù);
③∵f(x)=
lgx,x>0
0,x≤0
的值域?yàn)镽,所以不存在函數(shù)g(x)=kx+b,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故不存在承托函數(shù);
④f(x)=x+sinx≥x-1,所以存在函數(shù)g(x)=x-1,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故存在承托函數(shù);
故答案為:②④
點(diǎn)評(píng):本題是新定義題,考查對(duì)題意的理解和轉(zhuǎn)化的能力,要說(shuō)明一個(gè)命題是正確的,必須給出證明,對(duì)于存在性命題的探討,只需舉例說(shuō)明即可,對(duì)于不正確的命題,舉反例即可,有一定的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么函數(shù)f(x)的圖象最有可能的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知數(shù)列{an}滿(mǎn)足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)證明:數(shù)列{an+1-an }是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)在如圖所示的四棱錐P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(Ⅰ)求證:MC∥平面PAD;
(Ⅱ)求證:平面PAC⊥平面PBC;
(Ⅲ)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知函數(shù)f(x)滿(mǎn)足下面關(guān)系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)當(dāng)x∈(0,π]時(shí) f(x)=-cosx
給出下列四個(gè)命題:
①函數(shù)f(x)為周期函數(shù)      
②函數(shù)f(x)為奇函數(shù)
③函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱(chēng)  
④方程f(x)=lg|x|的解的個(gè)數(shù)是8
其中正確命題的序號(hào)是:
①④
①④
(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)函數(shù)f(x)=Asin(ωx+
π
6
)(ω>0)
的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
π
2
的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的國(guó)像,只需將f(x)的圖象向右平移
π
12
π
12
個(gè)單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案