4.已知Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,2Sn=(n+1)an,若關(guān)于正整數(shù)n的不等式an2-tan≤2t2的解集中的整數(shù)解有兩個,則正實(shí)數(shù)t的取值范圍為$[1,\frac{3}{2})$.

分析 a1=1,2Sn=(n+1)an,n≥2時,2an=2(Sn-Sn-1),化為:$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,可得:an=n.不等式an2-tan≤2t2,化為:(n-2t)(n+t)≤0,t>0,0<n≤2t,
關(guān)于正整數(shù)n的不等式an2-tan≤2t2的解集中的整數(shù)解有兩個,即可得出.

解答 解:∵a1=1,2Sn=(n+1)an,
∴n≥2時,2an=2(Sn-Sn-1)=(n+1)an-nan-1,化為:$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,
∴$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{2}}{2}$=$\frac{{a}_{1}}{1}$=1,
∴an=n.
不等式an2-tan≤2t2,化為:(n-2t)(n+t)≤0,t>0,
∴0<n≤2t,
關(guān)于正整數(shù)n的不等式an2-tan≤2t2的解集中的整數(shù)解有兩個,可知n=1,2.
∴1≤t<$\frac{3}{2}$,
故答案為:$[1,\frac{3}{2})$.

點(diǎn)評 本題考查了數(shù)列的遞推關(guān)系、不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≥4}\\{f(x+1)\;\;,x<4}\end{array}}$,則f(2+log23)的值為(  )
A.24B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若點(diǎn)P(3,4)是線段AB的中點(diǎn),且點(diǎn)A的坐標(biāo)為(-1,2),則點(diǎn)B的坐標(biāo)為(7,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對稱,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=$\frac{f({x}_{1})-f({x}_{2})}{1+f({x}_{1})f({x}_{2})}$,
(1)在我們學(xué)過的函數(shù)中,寫出f(x)的一個函數(shù)解析式,并說明其符合題設(shè)條件;
(2)若存在正常數(shù)T使得等式f(x-T)=f(x)對于x∈D都成立,則稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橋是南北方向,受落潮影響,海水以12.5km/h的速度向東流,現(xiàn)有一艘工作艇,在誨面上航行檢查橋墩的狀況,已知艇的速度是25km/h,若艇要沿著與橋平行的方問由南向北航行,則艇的航向如何確定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(x+$\sqrt{2}$)10的展開式中第7項(xiàng)的二項(xiàng)式系數(shù)是(  )
A.120B.210C.960D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知F1,F(xiàn)2分別是雙曲線3x2-y2=3a2(a>0)的左,右焦點(diǎn),P是拋物線y2=8ax與雙曲線的一個交點(diǎn),若|PF1|+|PF2|=12,則拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,三棱錐A-BCD的三條側(cè)棱AB,AC,AD兩兩互相垂直,O為點(diǎn)A在底面BCD上的射影.
(1)求證:O為△BCD的垂心;
(2)類比平面幾何的勾股定理,猜想此三棱錐側(cè)面與底面間的一個關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過焦點(diǎn)F1的直線交橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓的面積為4π,設(shè)A,B的兩點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),則|y1-y2|值為5.

查看答案和解析>>

同步練習(xí)冊答案