拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
(1) (2)-1
【解析】
試題分析:(1)由拋物線的準線方程,求出p即可;
(2)由直線BC方程求出x1和x2之間的關系式,然后用x1和x2表示出D點的坐標,
即可求出直線CD的斜率.
試題解析:(1)因為橢圓N:的左焦點為(,0),
所以,解得p=1,所以拋物線M的方程為.
(2)由題意知 A(),因為,所以.由于t>0,所以t= ①
由點B(0,t),C( )的坐標知,直線BC的方程為,
由因為A在直線BC上,故有,將①代入上式,得,解得,又因為D( ),所以直線CD的斜率為
kCD====-1.
考點:1.拋物線的方程和性質;2.方程和斜率.3.橢圓方程的性質.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3x |
MA |
MB |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆河南省畢業(yè)班階段測試一文數(shù)學卷(解析版) 題型:解答題
拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分10分)
如圖,已知拋物線M:的準線為,N為上的一個動點,過點N作拋物線M的兩條切線,切點分別為A、B,再分別過A、B兩點作的垂線,垂足分別為C,D。
求證:直線AB必經過y軸上的一個定點Q,并寫出點Q的坐標;
若的面積成等差數(shù)列,求此時點N的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分10分)
如圖,已知拋物線M:的準線為,N為上的一個動點,過點N作拋物線M的兩條切線,切點分別為A、B,再分別過A、B兩點作的垂線,垂足分別為C,D。
求證:直線AB必經過y軸上的一個定點Q,并寫出點Q的坐標;
若的面積成等差數(shù)列,求此時點N的坐標。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com