【題目】已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____

【答案】

【解析】

由已知利用正弦定理可以得到b2sinB,c2sinB),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求SABCsin2B+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.

解:∵銳角△ABC的外接圓的半徑為1A

∴由正弦定理可得:,可得:b2sinB,c2sinB),

SABCbcsinA

×2sinB×2sinB)×

sinBcosB+sinB

sin2B+,

B,C為銳角,可得:B,2B,可得:sin2B1],

SABCsin2B+1,]

故答案為:(1]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足:|a2﹣a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得 ?若存在,求m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測得河對岸塔的高,先在河岸上選一點(diǎn),使在塔底的正東方向上,測得點(diǎn)的仰角為60°,再由點(diǎn)沿北偏東15°方向走到位置,測得,則塔的高是(單位:)( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和向量

(1)若向量與向量同向,且,求點(diǎn)的坐標(biāo);

(2)若向量與向量的夾角是鈍角,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級名學(xué)生中進(jìn)行了抽樣調(diào)查發(fā)現(xiàn)喜歡甜品的占.這名學(xué)生中南方學(xué)生共。南方學(xué)生中有人不喜歡甜品.

(1)完成下列列聯(lián)表

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

北方學(xué)生

合計(jì)

(2)根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(3)已知在被調(diào)查的南方學(xué)生中有名數(shù)學(xué)系的學(xué)生,其中名不喜歡甜品;名物理系的學(xué)生,其中名不喜歡甜品.現(xiàn)從這兩個(gè)系的學(xué)生中,各隨機(jī)抽取,記抽出的人中不喜歡甜品的人數(shù)為,的分布列和數(shù)學(xué)期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:

(1)根據(jù)上述表格完成下列列聯(lián)表:

(2)判斷“能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?

(參考公式:,其中.)

0.010

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )

A. 函數(shù)的周期為

B. 函數(shù)上單調(diào)遞增

C. 函數(shù)的圖象關(guān)于點(diǎn)對稱

D. 把函數(shù)的圖象向右平移個(gè)單位,所得圖象對應(yīng)的函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:在正方體中,設(shè)直線與平面所成角為,二面角的大小為,則為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0, ]上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案