如圖,在△ABC中,∠C是直角,平面ABC外有一點P,PC=24,點P到直線AC、BC的距離PD和PE都等于6,求:
(1)點P到平面ABC的距離PF;
(2)PC與平面ABC所成的角.

【答案】分析:(1)連接EF,F(xiàn)D,F(xiàn)C,證明四邊形ECDF是矩形,可得結論;
(2)由題意,∠PCF為直線PC與面ABC所成的角,即可求出結論.
解答:解:(1)作PE,PD分別垂直于BC,BA,設PF垂直面ABC于F,
連接EF,F(xiàn)D,F(xiàn)C,
∵EP⊥CE,PF⊥CE,
∴CE⊥面PEF,∴CE⊥EF
同理,CD⊥DF
∵∠C是直角,
∴四邊形ECDF是矩形
∴EC=DF
Rt△PEC中,PE=6,PC=24,∴EC==6
Rt△PDF中,PF==12
(2)由題意,PF垂直面ABC于F,∠PCF為直線PC與面ABC所成的角.
∵sin∠PCF==,∴∠PCF=30°
即直線PC與面ABC所成的角為30°
點評:本題考查空間距離與角,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,設
AB
=a
,
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習冊答案