【答案】
分析:(1)由f(x)=e
x-ax,知f′(x)=e
x-e,由f′(x)=0,得x=1,列表討論得到f(x)在(-∞,1)上單調(diào)遞減,f(x)在(1,+∞)上單調(diào)遞增.
(2)f(x)≥1對x∈R恒成立等價于e
x-ax-1≥0對x∈R恒成立,令g(x)=e
x-ax-1,得g(0)=0,g′(x)=e
x-a,當(dāng)a=1時,g′(0)=0,由此入手進(jìn)行討論能夠?qū)С龃嬖趯崝?shù)a=1,使f(x)≥1對x∈R恒成立.
解答:解:(1)∵f(x)=e
x-ax,
∴f′(x)=e
x-e,由f′(x)=0,得x=1,
x | (-∞,1) | 1 | (1,+∞) |
f′(x) | - | 0 | + |
f(x) | ↓ | 極大值 | ↑ |
∴f(x)在(-∞,1)上單調(diào)遞減,f(x)在(1,+∞)上單調(diào)遞增.
(2)f(x)≥1對x∈R恒成立等價于e
x-ax-1≥0對x∈R恒成立,
令g(x)=e
x-ax-1,得g(0)=0,g′(x)=e
x-a,
當(dāng)a=1時,g′(0)=0,
x<0時,g′(x)<0,g(x)單調(diào)遞減,
x>0時,g′(x)>0,g(x)單調(diào)遞增,
g(x)在x=0取得極小值,g(x)≥g(0)=0,g(x)≥0恒成立,
當(dāng)a>1時,g(x)在[0,lna]單調(diào)遞減,當(dāng)x∈[0,lna]時,g(x)≤g(0)=0,
當(dāng)0<a<1時,g(x)在[lna,0]單調(diào)遞增,當(dāng)x∈[lna,0]時,g(x)≤g(0)=0,
當(dāng)a≤0時,g′(x)≥0,g(x)在R上單調(diào)遞增,當(dāng)x≤0時,g(x)≤g(0)=0.
∴存在實數(shù)a=1,使f(x)≥1對x∈R恒成立.
點評:本題考查函數(shù)的單調(diào)區(qū)間的求法,探索實數(shù)是否存在.綜合性強,難度大,具有一定的探索性,是高考的重點.解題時要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的合理運用.