(本小題滿分12分)已知函數(shù)(其中e為自然對數(shù))
(1)求F(x)="h" (x)的極值。
(2)設(shè) (常數(shù)a>0),當x>1時,求函數(shù)G(x)的單調(diào)區(qū)間,并在極值存在處求極值。
(1)F(x)取極小值為0(2)若1時,即0<a2,G(x)在(1,)遞增.,無極值。若>1時,即a>2,G(x)在(1,)遞減,在(,))遞增。所以處有極小值,極小值為
解析試題分析:(1) (x>0)
當0<x<時, <0, 此時F(x)遞減,
當x>時, >0,此時F(x)遞增
當x=時,F(x)取極小值為0 ……6分
(2)可得=
, ……9分
當x<時,G(x)遞減,當x>時,G(x)遞增 x>1, 若1時,即0<a2,G(x)在(1,)遞增.,無極值。若>1時,即a>2,G(x)在(1,)遞減,在(,))遞增。所以處有極小值,極小值為 …… 12分
考點:利用函數(shù)的導數(shù)求極值,單調(diào)區(qū)間
點評:本題第二問中求單調(diào)區(qū)間,極值時要注意對參數(shù)a的討論,當a取不同值時,函數(shù)在x>1的范圍內(nèi)的單調(diào)性不同
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分為12分)
已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是.
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
設(shè)點P在曲線上,從原點向A(2,4)移動,如果直線OP,曲線及直線x=2所圍成的面積分別記為、。
(Ⅰ)當時,求點P的坐標;
(Ⅱ)當有最小值時,求點P的坐標和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)且
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點,證明:線段與曲線存在異于、的公共點;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(10分)設(shè)函數(shù).
⑴ 求的極值點;
⑵ 若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
⑶ 已知當恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)過曲線C:外的點A(1,0)作曲線C的切線恰有兩條,
(Ⅰ)求滿足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com