(本小題滿分12分)已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且為和的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.
(Ⅰ);(Ⅱ) 。
解析試題分析:(Ⅰ)設(shè)等差數(shù)列的公差為(),則…2
解得……4分∴. ………………5分
(Ⅱ)由,∴,……………6分
.
∴…8分∴…10分
…12分
考點(diǎn):等差數(shù)列的簡(jiǎn)單性質(zhì);等比中項(xiàng);通項(xiàng)公式的求法;數(shù)列求和。
點(diǎn)評(píng):若已知遞推公式為的形式求通項(xiàng)公式常用累加法。
注:①若是關(guān)于n的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;
②若是關(guān)于n的二次函數(shù),累加后可分組求和;
③若是關(guān)于n的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;
④若是關(guān)于n的分式函數(shù),累加后可裂項(xiàng)求和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的首項(xiàng)為1,其前n項(xiàng)和為,是公比為正整數(shù)的等比數(shù)列,其首項(xiàng)為3,前n項(xiàng)和為. 若.
(1)求,的通項(xiàng)公式;(7分)
(2)求數(shù)列的前n項(xiàng)和.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè){an}是公差不為O的等差數(shù)列,Sn是其前n項(xiàng)和,已知,且
(1)求數(shù)列{an}的通項(xiàng)an
(2)求等比數(shù)列{bn}滿足b1=S1 ,b2=, 求和Tn=a1b1+a2b2+…+anbn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知數(shù)列的前n項(xiàng)和為,且,(=1,2,3…)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
公差不為零的等差數(shù)列中,,且、、 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知數(shù)列為等差數(shù)列,且,.
(1) 求數(shù)列的通項(xiàng)公式; (2) 令,求證:數(shù)列是等比數(shù)列.
(3)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知數(shù)列是公差不為零的等差數(shù)列,且成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式 (2)求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(文科題)(本小題12分)
(1)在等比數(shù)列{ }中,=162,公比q=3,前n項(xiàng)和=242,求首項(xiàng)和項(xiàng)數(shù)n的值.
(2)已知是數(shù)列的前n項(xiàng)和,,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知數(shù)列的前項(xiàng)和為,且對(duì)一切正整數(shù)都成立.
(1)求,的值;
(2)設(shè),數(shù)列的前項(xiàng)和為,當(dāng)為何值時(shí),最大?并求出的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com