【題目】對任意正整數(shù),若存在數(shù)列,滿足,其中,則稱數(shù)列為正整數(shù)的生成數(shù)列,記為.

1)寫出2018的生成數(shù)列;

2)求證:對任意正整數(shù),存在唯一的生成數(shù)列;

3)求生成數(shù)列的所有項的和.

【答案】(1)數(shù)列;(2)見解析;(3

【解析】

1)根據(jù)得到答案.

2)只需證明兩個不同的項生成數(shù)列表示的正整數(shù)不同,類推可得的充要條件是生成數(shù)列相同,得到證明

3)根據(jù)得到通項

,計算得到答案.

1

所以數(shù)列;

2)對于恰有項的生成數(shù)列,其表示的正整數(shù)最小值為,

表示的正整數(shù)最大值為

項的不同生成數(shù)列共有

而滿足的正整數(shù)恰好有

下面只需證明兩個不同的項生成數(shù)列表示的正整數(shù)不同,

設生成數(shù)列表示的數(shù)為AB,若

,同理,若有,也可得.

依次類推可得的充要條件是生成數(shù)列相同.

綜上可得,對任意正整數(shù),存在唯一的生成數(shù)列 .

3)因為

所以

的通項為

故所有項的和為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的極大值為16,極小值為-16.

1)求的值;

2)若過點可作三條不同的直線與曲線相切,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面為等邊三角形且垂直于底面,.

1)證明:平面

2)若四棱錐的體積為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)購是現(xiàn)在比較流行的一種購物方式,現(xiàn)隨機調(diào)查50名個人收入不同的消費者是否喜歡網(wǎng)購,調(diào)查結果表明:在喜歡網(wǎng)購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購的25人中有6人是低收入的人,另外19人是高收入的人.

喜歡網(wǎng)購

不喜歡網(wǎng)購

總計

低收入的人

高收入的人

總計

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨立性檢驗的思想,指出有多大把握認為是否喜歡網(wǎng)購與個人收入高低有關系;

(Ⅱ)將5名喜歡網(wǎng)購的消費者編號為123、4、5,將5名不喜歡網(wǎng)購的消費者編號也記作123、45,從這兩組人中各任選一人進行交流,求被選出的2人的編號之和為2的倍數(shù)的概率.

參考公式:

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形,平面,分別是的中點.

1證明:;

2上的動點,與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線經(jīng)過點,曲線的直角坐標方程為.

1)求曲線的普通方程,曲線的極坐標方程;

2)若,是曲線上兩點,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足,且時,,給出下列結論:①;②函數(shù)上是增函數(shù);③函數(shù)的圖像關于直線對稱;④若,則關于的方程上的所有根之和為.則其中正確命題的序號為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標系后,點的坐標為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內(nèi)作一次函數(shù))的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風景區(qū).

1)求證:

2)設點的橫坐標為,

①用表示兩點的坐標;

②將四邊形的面積表示成關于的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,已知函數(shù),.

(Ⅰ)設,求上的最大值.

(Ⅱ)設,若的極大值恒小于0,求證:.

查看答案和解析>>

同步練習冊答案