函數(shù)y=
-x+1
的單調(diào)遞減區(qū)間為
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)“同增異減”來判斷函數(shù)的單調(diào)區(qū)間,從而得出答案.
解答: 解:由題意得:-x+1≥0,解得:x≤1,
∴函數(shù)y=
-x+1
在(-∞,1]遞減,
故答案為:(-∞,1].
點(diǎn)評(píng):本題考查了函數(shù)的定義域問題,考查了復(fù)合函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6名學(xué)生排成一列,則學(xué)生甲、乙在學(xué)生丙不同側(cè)的排位方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線x2-
y2
9
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的左右焦點(diǎn),且<
PF1
,
PF2
>=120°,則|
PF1
+
PF2
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={(x,y)|x+y<4,x,y∈N*},則集合P的非空子集個(gè)數(shù)是(  )
A、2B、3C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線ax2+by2=12的兩條動(dòng)弦MA,MB所在直線的斜率分別為k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),試證明:k1k2為定值.
(2)已知a=3,b=4.
(i)若A(-2,0),B(2,0),試判斷k1k2是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
(ii)若定點(diǎn)M(1,-
3
2
)且k1k2=
3
4
,試判斷直線AB是否過一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:a1=2,a2=1,an>0,
a
2
n
-
a
2
n-1
a
2
n-1
=
a
2
n+1
-
a
2
n
a
2
n+1
(n≥2),則a3=( 。
A、
1
3
B、
2
7
7
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-(2a+1)x+(4a-2)lnx(a∈R).
(Ⅰ)若函數(shù)f(x)在x=3處取得極值,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a≤
3
2
時(shí),討論f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(2,1),
a
b
=10,|
a
+
b
|=5
2
,則|
b
|=(  )
A、
5
B、
10
C、5
D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f﹙x﹚=|x+1|+|x+2|+…+|x+2015|+|x-1|+|x-2|+…+|x-2015|(x∈R),且f(a2-3a+2)=f(a-1),則a的值為( 。
A、1B、3C、1或4D、1或3

查看答案和解析>>

同步練習(xí)冊(cè)答案