分析 (1)根據(jù)逆命題的定義寫出命題“若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)的逆命題,再進(jìn)行證明;
(2)寫出命題的逆否名,由于互為逆否命題同真假,故只需證原命題為真,利用f(x)在R上是增函數(shù),進(jìn)行證明;
解答 解(1)逆命題:
已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0.
逆命題為真.
(2)逆否命題:
已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,若f(a)+f(b)<f(-a)+f(-b),則a+b<0.
原命題為真,證明如下:∵a+b≥0,∴a≥-b,b≥-a.
又∵f(x)在(-∞,+∞)上是增函數(shù),∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-b)+f(-a)=f(-a)+f(-b).
∴原命題為真命題.∴其逆否命題也為真命題.
點(diǎn)評 此題主要考查四種命題的關(guān)系,逆命題、否命題的定義,注意互為逆否命題同真假,此題是一道很基礎(chǔ)的題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 分析法 | B. | 綜合法 | C. | 反證法 | D. | 合情推理 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com