設(shè)橢圓的方程為右焦點(diǎn)為,方程的兩實(shí)根分別為,則(   )
A.必在圓內(nèi)
B.必在圓
C.必在圓
D.必在圓與圓形成的圓環(huán)之間
由韋達(dá)定理,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052347957422.png" style="vertical-align:middle;" />,所以,即
必在圓與圓形成的圓環(huán)之間
故選
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長交橢圓于點(diǎn),過點(diǎn)軸的垂線交橢圓于另一點(diǎn),連接.

(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=﹣1時,對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn).設(shè)弦的中點(diǎn)為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知拋物線y=x2與直線y=k(x+2)交于A,B兩點(diǎn),且OA⊥OB,則k=(  )
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點(diǎn).
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率時,求橢圓長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過點(diǎn)作直線的垂線恰好經(jīng)過點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若存在過點(diǎn)的直線與曲線都相切,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為雙曲線的左右焦點(diǎn),點(diǎn)上,,則(         )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案