已知在一個120°的二面角的棱上有兩個點A、B,AC、BD分別是在這個二面角的兩個半平面內(nèi)且垂直于AB的線段,又AB=4cm,AC=6cm,BD=8cm,則CD的長為( 。
A.2
17
cm
B.
154
cm
C.2
41
cm
D.4
10
cm
由條件,知
CA
AB
=0,
AB
BD
=0
CD
=
CA
+
AB
+
BD

所以|
CD
|2
=|
CA
|2+|
AB
|2+|
BD
|2
+2
CA
AB
+2
AB
BD
+2
CA
BD

=62+42+82+2×6×8cos120°=68
所以CD=2
17
cm,
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知向量 ,,函數(shù).  (Ⅰ)求的單調(diào)增區(qū)間; (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

將圓按向量平移得到圓,直線與圓相交于、兩點,若在圓上存在點,使.求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知空間四點O(0,0,0),A(2,0,0),B(0,2,0),C(0,0,4),
(1)若直線AB上的一點H滿足AB⊥OH,求點H的坐標.
(2)若平面ABC上的一點G滿足OG⊥面ABC,求點G的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,E為BC中點,求證:AE⊥PD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則向量
BM
a
,
b
,
c
,可表示為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b滿足|ka+b|=
3
|a-kb|(k>0),
(1)求a與b的數(shù)量積用k表示的解析式f(k);
(2)a能否和b垂直?a能否和b平行?若不能,請說明理由;若能,請求出相應(yīng)的k值;
(3)求向量a與向量b的夾角的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于曲線有以下判斷:(1)它表示圓;(2)它關(guān)于原點對稱;(3)它關(guān)于直線對稱;(4).其中正確的有________(填上相應(yīng)的序號即可).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點為圓周的動點,過點作軸,垂足為,設(shè)線段的中點為,記點的軌跡方程為,點
(1)求動點的軌跡方程;
(2)若斜率為的另一個交點為,求面積的最大值及此時直線的方程;
(3)是否存在方向向量的直線交與兩個不同的點,且有?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案