已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))
【答案】分析:(Ⅰ)先求導(dǎo)函數(shù),直接讓導(dǎo)函數(shù)大于0求出增區(qū)間,導(dǎo)函數(shù)小于0求出減區(qū)間即可;
(Ⅱ)直接利用切線的斜率即為切點(diǎn)處的導(dǎo)數(shù)值以及切點(diǎn)是直線與曲線的共同點(diǎn)聯(lián)立方程即可求實(shí)數(shù)a的值;
(Ⅲ)先求出g(x)的導(dǎo)函數(shù),分情況討論出函數(shù)在在區(qū)間[1,e]上的單調(diào)性,進(jìn)而求得其在區(qū)間[1,e]上的最大值.
解答:解:(Ⅰ)′因為函數(shù),
∴f′(x)==
f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,x>2,
故函數(shù)在(0,2)上遞增,在(-∞,0)和(2,+∞)上遞減.
(Ⅱ)設(shè)切點(diǎn)為(x,y),
由切線斜率k=1=,⇒x3=-ax+2,①
由x-y-1=x--1=0⇒(x2-a)(x-1)=0⇒x=1,x=±
把x=1代入①得a=1,
把x=代入①得a=1,
把x=-代入①得a=-1,
∵a>0.
故所求實(shí)數(shù)a的值為1
(Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1),
∴g′(x)=lnx+1-a,且g′(1)=1-a,g′(e)=2-a.
當(dāng)a<1時,g′(1)>0,g′(e)>0,故g(x)在區(qū)間[1,e]上遞增,其最大值為g(e)=a+e(1-a);
當(dāng)1<a<2時,g′(1)<0,g′(e)>0,故g(x)在區(qū)間[1,e]上先減后增且g(1)=0,g(e)>0.所以g(x)在區(qū)間[1,e]上的最大值為g(e)=a+e(1-a);
當(dāng)a>2時,g′(1),0,g′(e)<0,g(x)在區(qū)間[1,e]上遞減,故最大值為g(1)=0.
點(diǎn)評:本題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是高考的常考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.(Ⅰ)求的解析式;(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶七中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)、若x=1是y=f(x)的一個極值點(diǎn),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)、若曲線y=f(x)與x軸有3個不同交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢市武昌區(qū)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)當(dāng)x∈(-∞,2)時,f(x)-4的值恒為負(fù)數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案