【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(1)求圓的方程;
(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;
(3)已知點,在平面內(nèi)是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標(biāo),若不存在說明理由.
【答案】(1);(2)或;(3)見解析
【解析】
(1)設(shè)出圓的一般方程,代入三個條件解得答案.
(2)將弦長轉(zhuǎn)化為圓心到直線的距離,利用點到直線的距離公式得到答案.
(3)設(shè)出點 利用兩點間距離公式得到比值關(guān)系,設(shè)為,最后利用方程與N無關(guān)得到關(guān)系式計算得到答案.
(1)因為圓經(jīng)過兩點,且圓心在直線上
設(shè)圓:
所以,,
所以,
所以圓
(2)當(dāng)斜率不存在的時候,,弦長為,滿足題意
當(dāng)斜率存在的時候,設(shè),即
所以直線的方程為:或
(3)設(shè),且
因為為定值,設(shè)
化簡得:,與點位置無關(guān),
所以
解得:或
所以定點為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)時, ;
(3)確定實數(shù)的值,使得存在當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,過橢圓外一點P可以做出兩條切線(如圖一),我們形象的稱為“筷子夾湯圓”.若P點在變化過程中,保持兩根“筷子”垂直不變,則P到原點的距離始終為一個定值,即P的運動軌跡為一個以原點為圓心,半徑為定值的一個圓,我們把該圓稱為橢圓的“準(zhǔn)圓”,試寫出該“準(zhǔn)圓”的方程是______________.若矩形的四條邊都與該橢圓相切(如圖二),則矩形的面積最大值為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,點分別為棱的中點.
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面平面;
(Ⅲ)在線段上是否存在一點,使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.
(1)求的通項公式;
(2)設(shè),記數(shù)列的前項和為,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,面,是直角三角形,,,,點、、分別為、、的中點.
(1)求證:;
(2)求直線與平面所成的角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( )
A.命題“若,則”的否命題
B.命題“若x>y,則x>|y|”的逆命題
C.命題“若x=1,則”的否命題
D.命題“已知,若,則a>b”的逆命題、否命題、逆否命題均為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓:,點,過點的直線交圓于、兩點.
(1)試判斷直線:與圓的位置關(guān)系;
(2)設(shè)弦的中點為,求的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com