如果函數(shù)f(x)的定義域為R,對于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整數(shù),當x>-1時,f(x)>0.
那么具有這種性質(zhì)的函數(shù)f(x)=    .(注:填上你認為正確的一個函數(shù)即可)
【答案】分析:由于函數(shù)f(x)的定義域為R,對于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,不妨令m=n=0,從而得到f(0)=6,然后利用其它條件,可以確定函數(shù)的大體特征,確定一個解析式即可.
解答:解:令m=n=0,則f(0)=f(0)+f(0)-6∴f(0)=6
因為當x>-1時,f(x)>0 又由f(-1)是不大于5的正整數(shù),
∴方便起見,就假設(shè)該函數(shù)為一次函數(shù),且f(-1)≤5,則f(x)=x+6或2x+6或3x+6或4x+6或5x+6都可以
故答案為:x+6或2x+6或3x+6或4x+6或5x+6
點評:本題考查了函數(shù)解析式的求解及常用方法,本題是個開放型問題,只要把握好函數(shù)滿足的特點然后結(jié)合常見的函數(shù)解析式,就可得到要求的函數(shù),考查了學生靈活應用轉(zhuǎn)化條件的能力,是個基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰為51元?(3分)
(2)設(shè)一次訂購量為x個,零件的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(3)如果訂購量為x個,該廠獲得的利潤為L,寫出函數(shù)L=g(x)的表達式;當銷售商一次訂購零件量x∈[50,500]時,要使該廠獲得的利潤最大,只有銷售商一次訂購多少零件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數(shù)a的取值范圍;
(2)設(shè)實數(shù)f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設(shè)H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數(shù)的底)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x21
+
x22
+a2
,③
x31
+
x32
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省衡水中學高三(上)第一次調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②,③
中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

同步練習冊答案