分析 (I)由△ABD為等邊三角形可得CG=$\sqrt{3}$=CF,于是CH⊥FG,由面面垂直的性質(zhì)得出BD⊥平面ACFE,故BD⊥CH,從而得出CH⊥平面BDF;
(II)以G為原點,以GA,GB為坐標(biāo)軸建立空間直角坐標(biāo)系,求出$\overrightarrow{HQ}$和平面BEF的法向量$\overrightarrow{n}$的坐標(biāo),則QH與平面BEF所成角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{HQ}$>|.
解答 (Ⅰ)證明:∵ACFE為平行四邊形,$AE=\sqrt{3}$,∴$CF=\sqrt{3}$,
∵四邊形ABCD為菱形,∴AG=CG,BG=DG,AD=AB,
∵AB=BD=2,∴△ABD是以2為邊長的等邊三角形,
∴$AG=CG=\sqrt{3}$,∴CG=CF,
∵H為FG的中點,∴CH⊥GF.
∵四邊形ABCD為菱形,∴BD⊥AC,
又∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,
∴BD⊥平面ACFE,∵CH?平面ACFE,
∴BD⊥CH,又∵BD∩GF=G,BD?平面BDF,GF?平面BDF,
∴CH⊥平面BDF.
(Ⅱ)在面ACFE中,作GM⊥AC交EF于M,
∵平面ACFE⊥平面ABCD,∴GM⊥平面ABCD.
以G為原點,以GA,GB,GM為坐標(biāo)軸建立空間直角坐標(biāo)系如圖所示:
則B(0,1,0),D(0,-1,0),G(0,0,0),A($\sqrt{3}$,0,0),C(-$\sqrt{3}$,0,0).
∵CH⊥FG,$CG=\sqrt{3}$,$CH=\frac{{\sqrt{3}}}{2}$,∴∠FGC=30°,HG=$\frac{3}{2}$.∴∠EAG=60°,
∴H(-$\frac{3\sqrt{3}}{4}$,0,$\frac{3}{4}$),F(xiàn)(-$\frac{3\sqrt{3}}{2}$,0,$\frac{3}{2}$),E($\frac{\sqrt{3}}{2}$,0,$\frac{3}{2}$).
∴$\overrightarrow{HF}$=(-$\frac{3\sqrt{3}}{4}$,0,$\frac{3}{4}$),$\overrightarrow{BE}$=($\frac{\sqrt{3}}{2}$,-1,$\frac{3}{2}$),$\overrightarrow{FE}$=(2$\sqrt{3}$,0,0),$\overrightarrow{FD}$=($\frac{3\sqrt{3}}{2}$,-1,-$\frac{3}{2}$).
∵Q是△DEF的重心,∴$\overrightarrow{FQ}$=$\frac{1}{3}$($\overrightarrow{FD}+\overrightarrow{FE}$)=($\frac{7\sqrt{3}}{6}$,-$\frac{1}{3}$,-$\frac{1}{2}$).
∴$\overrightarrow{HQ}$=$\overrightarrow{HF}$+$\overrightarrow{FQ}$=($\frac{5\sqrt{3}}{12}$,-$\frac{1}{3}$,$\frac{1}{4}$).
設(shè)面BEF的法向量為$\overrightarrow n=(x,y,z)$,則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FE}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2\sqrt{3}x=0}\\{\frac{\sqrt{3}}{2}x-y+\frac{3}{2}z=0}\end{array}\right.$,令z=2,得$\overrightarrow{n}$=(0,3,2).
∴$\overrightarrow{n}•\overrightarrow{HQ}$=-$\frac{1}{2}$,|$\overrightarrow{n}$|=$\sqrt{13}$,|$\overrightarrow{HQ}$|=$\frac{5}{6}$,
∴cos<$\overrightarrow{n},\overrightarrow{HQ}$>=$\frac{\overrightarrow{n}•\overrightarrow{HQ}}{|\overrightarrow{n}||\overrightarrow{HQ}|}$=-$\frac{{3\sqrt{13}}}{65}$.
∴QH與平面BEF所成角的正弦值為$\frac{{3\sqrt{13}}}{65}$.
點評 本題考查了線面垂直的判定,線面角的計算,空間向量的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$$\sqrt{2}$ | C. | $\frac{2\sqrt{5}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7 | B. | 7 | C. | -28 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com