定義在上的可導(dǎo)函數(shù),當(dāng)時(shí),恒成立,,則的大小關(guān)系為        (    )
A.B.C.D.
A
由當(dāng)時(shí),恒成立知,當(dāng)當(dāng)時(shí),,所以上是增函數(shù).因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157538163455.png" style="vertical-align:middle;" />.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是曲線上的一點(diǎn),若曲線在處的切線的傾斜角是均不小于的銳角,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),函數(shù)的最值等基礎(chǔ)知識(shí).考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)如圖,在直線之間表示的是一條河流,河流的一側(cè)河岸(x軸)是一條公路,且公路隨時(shí)隨處都有公交車來往. 家住A(0,a)的某學(xué)生在位于公路上Bd,0)(d>0)處的學(xué)校就讀. 每天早晨該學(xué)生都要從家出發(fā),可以先乘船渡河到達(dá)公路上某一點(diǎn),再乘公交車去學(xué)校,或者直接乘船渡河到達(dá)公路上Bd, 0)處的學(xué)校.已知船速為,車速為(水流速度忽略不計(jì)).若d=2a,求該學(xué)生早晨上學(xué)時(shí),從家出發(fā)到達(dá)學(xué)校所用的最短時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間的值域?yàn)?nbsp;(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若對任意實(shí)數(shù)x,有¦(―x)=―¦(x),g(―x)=g(x),且x>0時(shí)¦′ (x)>0,g′ (x)>0,則x<0時(shí)
A.¦′(x)>0,g′ (x)>0B.¦′(x)>0,g′ (x)<0
C.¦′(x)<0,g′ (x)>0D.¦′(x)<0,g′ (x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值,過點(diǎn)作曲線的切線,(1)求此切線的方程.(2)求切線與函數(shù)的圖象圍成的平面圖形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程是          ;

查看答案和解析>>

同步練習(xí)冊答案