【題目】如圖,正方形與梯形所在的平面互相垂直, , ,點是線段的中點.
(1)求證: 面;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:⑴三角形中位線定理可得,且,即可證明是平行四邊形,再利用線面平行的判定定理即可證明面;
⑵建立空間直角坐標(biāo)系,用坐標(biāo)表示點與向量,求出的坐標(biāo),求得平面和平面的法向量,設(shè)平面與平面所成銳二面角為,用空間向量求得平面內(nèi)的夾角即可得到答案
解析:(1)證明:取中點,連則,且
∴是平行四邊形,∴
∵平面, 平面,∴平面
(2)如圖,建立空間直角坐標(biāo)系,
則
因為點是線段的中點,
則, ,
又.
設(shè)是平面的法向量,
則.
取,得,
即得平面的一個法向量為.
由題可知, 是平面的一個法向量.
設(shè)平面與平面所成銳二面角為,
因此, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京大學(xué)從參加逐夢計劃自主招生考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在內(nèi)的頻率;
(2)估計本次考試成績的中位數(shù)(結(jié)果四舍五入,保留整數(shù));
(3)用分層抽樣的方法在分數(shù)段為的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有人在分數(shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為直角梯形, 平面,側(cè)面是等腰直角三角形, , ,點是棱的中點.
(1)證明:平面平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 的兩個頂點的坐標(biāo)分別為,三個內(nèi)角滿足.
(1)若頂點的軌跡為,求曲線的方程;
(2)若點為曲線上的一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關(guān)于的函數(shù)表達式,并求函數(shù)的定義域;
(2)當(dāng)為多少時,包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)若,求的取值范圍;
(2)討論的單調(diào)性;
(3)當(dāng)時,討論在區(qū)間內(nèi)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為,.
()證明數(shù)列是等比數(shù)列,求出數(shù)列的通項公式.
()設(shè),求數(shù)列的前項和.
()數(shù)列中是否存在三項,它們可以構(gòu)成等比數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當(dāng), 時,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com