θ=
π
6
(ρ≥0)化為直角坐標(biāo)方程是
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:利用極坐標(biāo)與直角坐標(biāo)的互化即可得出.
解答: 解:由θ=
π
6
(ρ≥0)可知:斜率k=tan
π
6
=
3
3
,又經(jīng)過(guò)原點(diǎn),可得y=
3
3
x(x≥0)

故答案為:y=
3
3
x(x≥0)
點(diǎn)評(píng):本題考查了極坐標(biāo)與直角坐標(biāo)的互化,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)關(guān)于x的一元二次方程9x2+6ax+b2=0…(*),解決下列兩個(gè)問(wèn)題:
(1)若a是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求方程(*)有兩個(gè)不相等實(shí)根的概率;
(2)若a是從區(qū)間[1,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求方程(*)有兩個(gè)不相等實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四個(gè)不同的小球放入四個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法?
(1)恰有一個(gè)盒子里放2個(gè)球;
(2)恰有兩個(gè)盒子不放球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果(
3
+2x)2013=a0+a1x+a2x2+…+a2013x2013,那么(a1+a3+a5+…+a20132-(a0+a2+a4+…+a20122=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P中的元素x滿足x∈N,且1<x<a,且集合P中恰有三個(gè)元素,則整數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的個(gè)數(shù)為
 
 個(gè)
①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②若一個(gè)命題的否命題為假,則它本身一定為真;
x>1
y>2
x+y>3
xy>2
的充要條件;
④“x=3”是“|x|=3”成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
①在△ABC中,若sinA>sinB,則A>B;
②設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c成等比數(shù)列,則
sinA+cosA•tanC
sinB+cosB•tanC
的取值范圍是(
5
-1
2
,
5
+1
2
);
③Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1>0,S6=S9,則S15=-15;
④數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,an+1+2Sn=n+1,則S2013=1007;
⑤數(shù)列{an}滿足a1=33,an+1-an=2n,則
an
n
的最小值為
53
5

其中正確的命題序號(hào)
 
.(注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題:
(1)若∫
 
b
a
f(x)dx>0,則f(x)>0;    
(2)∫
 
0
|sinx|dx=4;
(3)f(x)的原函數(shù)為F(x),且F(x)是以T為周期的函數(shù),則∫
 
a
0
f(x)dx=∫
 
a+T
T
f(x)dx;
其中正確的命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)(a+3i)-(1-i)(a∈R,i為虛數(shù)單位)的模為5,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案