【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)能在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān);
(2)(i)經(jīng)常使用共享單車的有3人,偶爾或不用共享單車的有2人.(ii)
【解析】試題分析:
(1)由列聯(lián)表可得,所以能在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān).
(2)(i)依題意可知,經(jīng)常使用共享單車的有(人),偶爾或不用共享單車的有(人).
(ii)由題意列出所有可能的結(jié)果,結(jié)合古典概型公式和對(duì)立事件公式可得選出的2人中至少有1人經(jīng)常使用共享單車的概率.
試題解析:
(1)由列聯(lián)表可知,
.
因?yàn)?/span>,
所以能在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān).
(2)(i)依題意可知,所抽取的5名30歲以上的網(wǎng)友中,經(jīng)常使用共享單車的有(人),偶爾或不用共享單車的有(人).
(ii)設(shè)這5人中,經(jīng)常使用共享單車的3人分別為, , ;偶爾或不用共享單車的2人分別為, .
則從5人中選出2人的所有可能結(jié)果為, , , , , , , , , 共10種.
其中沒(méi)有1人經(jīng)常使用共享單車的可能結(jié)果為共1種,
故選出的2人中至少有1人經(jīng)常使用共享單車的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為T(mén)n , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點(diǎn),在軸上是否存在點(diǎn),使為正三角形,若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,并且滿足,且,當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性,并給出證明;
(3)如果,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=e|x﹣a|(a∈R)滿足f(1+x)=f(﹣x),且f(x)在區(qū)間[m,m+1]上是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宿州市某登山愛(ài)好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了4次山高與相應(yīng)的氣溫,并制作了對(duì)照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計(jì)山高為72(百米)處的氣溫為( )
氣溫x(℃) | 18 | 13 | 10 | ﹣1 |
山高y(百米) | 24 | 34 | 38 | 64 |
A.﹣10
B.﹣8
C.﹣6
D.﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn), , 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的方程;
(2)已知直線: 被圓: 所截得的弦長(zhǎng)為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com