【題目】已知函數(shù),其導(dǎo)函數(shù)為.
(1)討論函數(shù)的單調(diào)性;
(2)若,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍。
【答案】(1)見解析(2)
【解析】
根據(jù)題意,對(duì)函數(shù)進(jìn)行求導(dǎo),得出,再通過(guò)對(duì)進(jìn)行分類討論,得出導(dǎo)數(shù)的正負(fù)情況,對(duì)應(yīng)得出區(qū)間上的單調(diào)性,即可求解出答案。
根據(jù)題意,列出不等式,利用分離參數(shù)的方法,得出對(duì)任意實(shí)數(shù)恒成立,將題目轉(zhuǎn)化為求當(dāng)時(shí)的最小值問題。令,,對(duì)進(jìn)行求導(dǎo)研究其單調(diào)性求出最小值,即可得出答案。
解:(1)依題意,,,
①若,則,函數(shù)在上單調(diào)遞增,
②若,令,得.
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,
綜上所述,
當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(2)依題意,當(dāng)時(shí),恒成立,即
對(duì)任意實(shí)數(shù)恒成立.
令,,則
,
由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,
故,即,得.
所以方程有唯一解,
且當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
所以,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是一幅統(tǒng)計(jì)圖,根據(jù)此圖得到的以下說(shuō)法中正確的是( )
A.這幾年生活水平逐年得到提高
B.生活費(fèi)收入指數(shù)增長(zhǎng)最快的一年是2015年
C.生活價(jià)格指數(shù)上漲速度最快的一年是2016年
D.雖然2017年的生活費(fèi)收入增長(zhǎng)緩慢,但生活價(jià)格指數(shù)略有降低,因而生活水平有較大的改善
E.2016年生活價(jià)格指數(shù)上漲的速度與2017年生活價(jià)格指數(shù)下降的速度相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開展滑雪促銷活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來(lái)該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過(guò)1小時(shí)離開的概率分別為,;1小時(shí)以上且不超過(guò)2小時(shí)離開的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過(guò)3小時(shí).
(1)求甲、乙兩人所付滑雪費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析與獨(dú)立性檢驗(yàn)的說(shuō)法正確的是()
A.回歸分析和獨(dú)立性檢驗(yàn)沒有什么區(qū)別;
B.回歸分析是對(duì)兩個(gè)變量準(zhǔn)確關(guān)系的分析,而獨(dú)立性檢驗(yàn)是分析兩個(gè)變量之間的不確定性關(guān)系;
C.獨(dú)立性檢驗(yàn)可以確定兩個(gè)變量之間是否具有某種關(guān)系.
D.回歸分析研究?jī)蓚(gè)變量之間的相關(guān)關(guān)系,獨(dú)立性檢驗(yàn)是對(duì)兩個(gè)變量是否具有某種關(guān)系的一種檢驗(yàn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求的值域;
(2)設(shè)函數(shù), ,若對(duì)于任意, 總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中無(wú)理數(shù).
(Ⅰ)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍;
(Ⅱ)若函數(shù)的極值點(diǎn)有三個(gè),最小的記為,最大的記為,若的最大值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機(jī)抽取5間,統(tǒng)計(jì)元旦期間的網(wǎng)購(gòu)金額(單位:萬(wàn)元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)若網(wǎng)購(gòu)金額(單位:萬(wàn)元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.根據(jù)莖葉圖推斷90間服務(wù)站中有幾間優(yōu)秀服務(wù)站?
(3)從隨機(jī)抽取的5間服務(wù)站中再任取2間作網(wǎng)購(gòu)商品的調(diào)查,求恰有1間是優(yōu)秀服務(wù)站的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對(duì)任意正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時(shí),f(x)>0.
(1)求f()的值;
(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;
(3)解不等式f(2x)>f(8x-6)-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,AB=2,BC=1,F為線段CD上一動(dòng)點(diǎn)(不含端點(diǎn)),現(xiàn)將△ADF沿直線AF進(jìn)行翻折,在翻折過(guò)程中不可能成立的是( 。
A.存在某個(gè)位置,使直線AF與BD垂直B.存在某個(gè)位置,使直線AD與BF垂直
C.存在某個(gè)位置,使直線CF與DA垂直D.存在某個(gè)位置,使直線AB與DF垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com