【題目】已知函數(shù).
(1)若函數(shù)的極小值為0,求的值;
(2)且,求證:.
【答案】(1).(2)見解析.
【解析】
(1)根據(jù)導(dǎo)數(shù)在定義域內(nèi)是否有零點確定分類討論的標(biāo)準(zhǔn)為和,然后分別討論導(dǎo)數(shù)的符號,確定當(dāng)時在處取得極小值,再通過討論的單調(diào)性,從而由有唯一解.
(2)一方面,可以將問題等價轉(zhuǎn)化為證當(dāng)時,恒成立問題,然后構(gòu)造函數(shù),通過其導(dǎo)數(shù)確定單調(diào)性,從而使問題得證;另一方面,也可以直接構(gòu)造函數(shù)(),由其二階導(dǎo)數(shù)以及的范圍確定一階導(dǎo)數(shù)的單調(diào)性,從而確定的符號,進(jìn)而確定的單調(diào)性,可得,使問題得證.
(Ⅰ)因為
所以,
當(dāng)時,,函數(shù)在定義域上遞增,不滿足條件;
當(dāng)時,函數(shù)在上遞減,在上遞增,
故在取得極小值0,,
令,,所以在(0,1)單調(diào)遞增,
在單調(diào)遞減,故,的解為,
故.
(2)證法1:由,
,所以只需證當(dāng)時,恒成立.
令
由(1)可知,令得
在上遞增,故,所以命題得證.
證法2:,
設(shè)(),則,
則,又,,得,
所以單調(diào)遞增,得,
所以單調(diào)遞增,得,得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,一同學(xué)通過網(wǎng)絡(luò)平臺聽網(wǎng)課,在家堅持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一動點,在軸,軸上的射影分別為點,,動點滿足,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)過點的直線與曲線交于,兩點,判斷以為直徑的圓是否過定點?求出定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在點處的切線方程為,求的值;
(2)若函數(shù)有兩個極值點,證明:成等差數(shù)列;
(3)若函數(shù)有三個零點,對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程是:
(1)求曲線的普通方程和直線的直角坐標(biāo)方程.
(2)點是曲線上的動點,求點到直線距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實數(shù)的最大值;
(2)在(1)成立的條件下,正實數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程及的直角坐標(biāo)方程;
(2)若曲線與曲線分別交于點,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在x=1處的切線為y=2x-3,求實教a,b的值.
(2)若a=0,且-2對一切正實數(shù)x值成立,求實數(shù)b的取值范圍.
(3)若b=4,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com