已知命題p:a>b,命題q:ac2>bc2.那么命題p是q的
必要不充分
必要不充分
 條件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”.)
分析:根據(jù)不等式的基本性質(zhì),“a>b”不一定“ac2>bc2”結(jié)論,因?yàn)楸仨氂衏2>0這一條件;反過(guò)來(lái)若“ac2>bc2”,說(shuō)明c2>0一定成立,一定可以得出“a>b”,即可得出答案.
解答:解:由于當(dāng)c=0時(shí),a>b?ac2>bc2;
當(dāng)ac2>bc2時(shí),說(shuō)明c≠0,
有c2>0,得ac2>bc2⇒a>b.
故答案為:必要不充分
點(diǎn)評(píng):本題以不等式為載體,考查了充分必要條件的判斷,充分利用不等式的基本性質(zhì)是推導(dǎo)不等關(guān)系,得出正確結(jié)論的重要條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知命題p:a,b是整數(shù);命題q:x2+ax+b=0有且僅有整數(shù)解,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:?a,b∈(0,+∞),當(dāng)a+b=1時(shí),
1
a
+
1
b
=3
;命題Q:?x∈R,x2-x+1≥0恒成立,則下列命題是假命題的是( 。
A、非P∨非QB、非P∧非Q
C、非P∨QD、非P∧Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:a>b>0,命題Q:a2>b2,那么命題P是命題Q的成立( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口二模)已知命題p:a>b是ac2>bc2的必要不充分條件;命題q:在△ABC中,∠C>∠B是sinC>sinB的充要條件,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?a,b∈(0,+∞),當(dāng)a+b=1時(shí),
1
a
+
1
b
=3
;命題q:?x∈R,x2-x+1≥0恒成立.則命題?p且q是
命題(填“真”或“假”).

查看答案和解析>>

同步練習(xí)冊(cè)答案