如圖所示,橢圓C:數(shù)學(xué)公式=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩個(gè)端點(diǎn)為A、B.已知數(shù)學(xué)公式、數(shù)學(xué)公式數(shù)學(xué)公式成等比數(shù)列,數(shù)學(xué)公式-數(shù)學(xué)公式=2,與x軸不垂直的直線l與C交于不同的兩點(diǎn)M、N,記直線AM、AN的斜率分別為k1、k2,且k1•k2=數(shù)學(xué)公式
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證直線l與y軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).

解:(Ⅰ)易知,(其中),則由題意知有a2=2bc.又∵a2+b2=c2,聯(lián)立得b=c.∴a=
,∴2cos45°=2.∴b2=1a2=1.
故橢圓C的方程為.(4分)
(Ⅱ)設(shè)直線l的方程為y=kx+b,M、N坐標(biāo)分別為M(x1,y1)、N(x2,y2).
?(1+2k2)x2+4kbx+2b2-2=0.
,

==
將韋達(dá)定理代入,并整理得,解得b=2.
∴直線l與y軸相交于定點(diǎn)(0,2).
分析:(Ⅰ)根據(jù)題意可知,通過(guò)、成等比數(shù)列推斷出a2=2bc,進(jìn)而根據(jù)a,b和c的關(guān)系求得a和b的關(guān)系,利用求得b,則a可求,橢圓的方程可得.
(Ⅱ)設(shè)出直線l的方程,和M,N的坐標(biāo),把直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理表示出x1+x2和x1x2,進(jìn)而利用k1•k2=求得b,進(jìn)而可求得直線l與y軸相交的點(diǎn).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合.考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩個(gè)端點(diǎn)為A、B.已知|
OB
|
|
F1B
|
、
|F1F2
|
成等比數(shù)列,|
F1B
|
-
|F1F2
|
=2,與x軸不垂直的直線l與C交于不同的兩點(diǎn)M、N,記直線AM、AN的斜率分別為k1、k2,且k1•k2=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求證直線l與y軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo);
(Ⅲ)當(dāng)弦MN的中點(diǎn)P落在四邊形F1AF2B內(nèi)(包括邊界)時(shí),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左焦點(diǎn)為F1(-1,0),右焦點(diǎn)為F2(1,0),短軸兩個(gè)端點(diǎn)為A、B.與x軸不垂直的直線l與橢圓C交于不同的兩點(diǎn)M、N,記直線AM、AN的斜率分別為k1、k2,且k1k2=
3
2

(1)求橢圓C的方程;
(2)求證直線l與y軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦MN的中點(diǎn)P落在△MF1F2內(nèi)(包括邊界)時(shí),求直線l的斜率的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,橢圓C:
 x2   
b2
+
y2    
a2
=1(a>b>0)
的焦點(diǎn)為F1(0,c),F(xiàn)2(0,-c)(c>0),拋物線x2=2py(p>0)的焦點(diǎn)與F1重合,過(guò)F2的直線l與拋物線P相切,切點(diǎn)在第一象限,且與橢圓C相交于A,B兩點(diǎn),且
F2B
AF2

(1)求證:切線l的斜率為定值;
(2)當(dāng)λ∈[2,4]時(shí),求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)為 F(1,0),且過(guò)點(diǎn)(
2
,
6
2
)

(1)求橢圓C的方程;
(2)已知A、B為橢圓上的點(diǎn),且直線AB垂直于x軸,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
(。┣笞C:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•茂名二模)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
5
5
,且A(0,1)是橢圓C的頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)A作斜率為1的直線l,在直線l上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過(guò)點(diǎn)M的雙曲線E的實(shí)軸最長(zhǎng),并求此雙曲線E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案