13.已知函數(shù)f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R.
(1)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)的圖象在點(diǎn)(1,f(x))處的切線的斜率為$\frac{1}{2}$,且函數(shù)f(x)的最大值為M,求證:1<M<$\frac{3}{2}$.

分析 (1)由題意可得f(x)=0有解,即m$\sqrt{x}$+lnx=0有解,即有-m=$\frac{lnx}{\sqrt{x}}$,設(shè)g(x)=$\frac{lnx}{\sqrt{x}}$,求得導(dǎo)數(shù)和單調(diào)區(qū)間,可得極大值,且為最大值,即可得到m的范圍;
(2)求出f(x)的導(dǎo)數(shù),求得切線的斜率,可得m=1,再令f′(x)=0,設(shè)出極大值點(diǎn),也即最大值點(diǎn),運(yùn)用函數(shù)零點(diǎn)存在定理,可得t的范圍,化簡(jiǎn)整理由二次函數(shù)的單調(diào)性,即可得證.

解答 解:(1)若函數(shù)f(x)有零點(diǎn),
則f(x)=0有解,
即m$\sqrt{x}$+lnx=0有解,
即有-m=$\frac{lnx}{\sqrt{x}}$,
由g(x)=$\frac{lnx}{\sqrt{x}}$的導(dǎo)數(shù)為g′(x)=$\frac{2-lnx}{2x\sqrt{x}}$,
當(dāng)x>e2時(shí),g′(x)<0,g(x)遞減;
當(dāng)0<x<e2時(shí),g′(x)>0,g(x)遞增.
可得g(x)在x=e2時(shí),取得極大值,且為最大值$\frac{2}{e}$,
可得-m>$\frac{2}{e}$,解得m<-$\frac{2}{e}$,
則實(shí)數(shù)m的取值范圍為(-∞,-$\frac{2}{e}$);
(2)證明:函數(shù)f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0)的導(dǎo)數(shù)為f′(x)=$\frac{1-\frac{m}{2}\sqrt{x}-lnx}{{x}^{2}}$,
可得f(x)在點(diǎn)(1,f(1))處的切線的斜率為1-$\frac{m}{2}$=$\frac{1}{2}$,
解得m=1,
即有f(x)=$\frac{\sqrt{x}+lnx}{x}$的導(dǎo)數(shù)為f′(x)=$\frac{1-\frac{\sqrt{x}}{2}-lnx}{{x}^{2}}$,
令f′(x)=0,可得lnx+$\frac{\sqrt{x}}{2}$=1,
設(shè)方程的解為t,由h(x)=lnx+$\frac{\sqrt{x}}{2}$-1遞增,且h(1)-1=-$\frac{1}{2}$<0,h($\frac{3}{2}$)=ln$\frac{3}{2}$+$\frac{\sqrt{6}}{4}$-1>0,
可得1<t<$\frac{3}{2}$,且lnt+$\frac{\sqrt{t}}{2}$=1,
即有f(x)的最大值為f(t)=$\frac{\sqrt{t}+lnt}{t}$=$\frac{1+\frac{\sqrt{t}}{2}}{t}$
=$\frac{1}{t}$+$\frac{1}{2\sqrt{t}}$=($\frac{1}{\sqrt{t}}$+$\frac{1}{4}$)2-$\frac{1}{16}$,
可得f(t)在(1,$\frac{3}{2}$)遞減,
f(1)=$\frac{3}{2}$,f($\frac{3}{2}$)=$\frac{2}{3}$+$\frac{1}{\sqrt{6}}$>1,
即有f(t)∈(f($\frac{3}{2}$),f(1)),
則有1<M<$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,同時(shí)考查參數(shù)分離和構(gòu)造函數(shù)法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=|2016x-2|-b有兩個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為使政府部門與群眾的溝通日常化,某城市社區(qū)組織“網(wǎng)絡(luò)在線問(wèn)政”獲動(dòng),2015年,該社區(qū)每月通過(guò)問(wèn)卷形式進(jìn)行一次網(wǎng)上問(wèn)政;2016年初,社區(qū)隨機(jī)抽取了60名居民,對(duì)居民上網(wǎng)參政意愿進(jìn)行調(diào)查,已知上網(wǎng)參與問(wèn)政次數(shù)與參與人數(shù)的頻率分布如表:
參與調(diào)查問(wèn)卷次數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]
參與調(diào)查問(wèn)卷人數(shù)814814106
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$;
 P(x2>k) 0.100 0.050 0.010
 k 2.706 3,8416.635
(1)若將參與調(diào)查的問(wèn)卷不低于4次的居民稱為“積極上網(wǎng)參政居民”,請(qǐng)您根據(jù)頻數(shù)分布表,完成2×2列聯(lián)表,據(jù)此調(diào)查你是否有99%的把握認(rèn)為在此社區(qū)內(nèi)“上網(wǎng)參政議政與性別有關(guān)?”
合計(jì)
積極上網(wǎng)參政居民8
不積極上網(wǎng)參政居民
合計(jì)40
(2)從被調(diào)查的人中按男女比例隨機(jī)選取6人,再?gòu)倪x取的6人中選出3人參加政府聽(tīng)證會(huì),求選出的3人為2男1女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=lg(x+$\sqrt{{x^2}+1}$),且對(duì)于任意的x∈(1,2],f($\frac{x+1}{x-1}$)+f($\frac{m}{{{{(x-1)}^2}(6-x)}}$)>0恒成立,則m的取值范圍是m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.命題p:a<b,則ac2<bc2;命題q:“x=$\frac{π}{4}$”是“tanx=1”的充分不必要條件,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,A=$\frac{2π}{3}$,AB=$\sqrt{2}$,B的角平分線BD=$\sqrt{3}$,則BC的長(zhǎng)為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示的程序框圖的算法思路源于我國(guó)古代數(shù)字著作《數(shù)書九章》,稱為“秦九韶算法”.執(zhí)行該程序框圖,若輸入x=2,n=5,則輸出的v=( 。
A.26B.48C.57D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在各項(xiàng)均為正數(shù)的等差數(shù)列{an}中,a1=1,a4+2是a4-1和a9+3的等比中項(xiàng),數(shù)列{bn}滿足bnn•2${\;}^{{a}_{n}}$(λ≠0)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)z滿足(z+3i)(2-i3)=10i5,則復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案