17.已知函數(shù)f(x)=2sin2x(cos2x-sin2x)+1
(1)求函數(shù)f(x)的單調(diào)增區(qū)間和對稱中心;
(2)若f(x)得圖象C經(jīng)過向右平移$\frac{π}{4}$得函數(shù)g(x)的圖象,求g(x)的解析式,并求出當(dāng)x∈[0,$\frac{π}{4}$]時,g(x)的最值.

分析 (1)利用三角恒等變換化簡f(x)的解析式為$\sqrt{2}$sin(4x+$\frac{π}{4}$),根據(jù)正弦函數(shù)圖象由此求得它的單調(diào)性及對稱中心;
(2)由函數(shù) y=Asin(ωx+φ)的圖象變換規(guī)律求出g(x)的解析式,根據(jù)x的范圍求出函數(shù)的值域.

解答 解:(1)f(x)=2sin2x(cos2x-sin2x)+1,
=2sin2xcos2x-2sin22x+1,
=sin4x+cos4x,
=$\sqrt{2}$sin(4x+$\frac{π}{4}$),
令2kπ-$\frac{π}{2}$≤4x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,
解得:$\frac{kπ}{2}$-$\frac{3π}{16}$≤x≤$\frac{kπ}{2}$+$\frac{π}{16}$,k∈Z,
則函數(shù)的單調(diào)增區(qū)間為[$\frac{kπ}{2}$-$\frac{3π}{16}$,$\frac{kπ}{2}$+$\frac{π}{16}$],k∈Z,
令4x+$\frac{π}{4}$=kπ,解得x=$\frac{kπ}{4}-\frac{π}{16}$,k∈Z,
故函數(shù)的對稱中心為($\frac{kπ}{4}-\frac{π}{16}$,0),
(2)f(x)得圖象C經(jīng)過向右平移$\frac{π}{4}$得函數(shù)g(x)的圖象,
g(x)=$\sqrt{2}$sin[4(x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(4x-$\frac{3π}{4}$),
∴g(x)=$\sqrt{2}$sin(4x-$\frac{3π}{4}$),
x∈[0,$\frac{π}{4}$],4x-$\frac{3π}{4}$∈[-$\frac{3π}{4}$,$\frac{π}{4}$],
由正弦函數(shù)圖象可知:當(dāng)4x-$\frac{3π}{4}$=-$\frac{π}{2}$,x=$\frac{π}{16}$,取最小值-$\sqrt{2}$,
4x-$\frac{3π}{4}$=$\frac{π}{4}$時,即x=$\frac{π}{4}$,取最大值1.

點評 本題考查三角函數(shù)的化簡和求值,考查二倍角的正弦和余弦公式及兩角和輔助角公式,考查函數(shù)圖象變換,正弦函數(shù)的單調(diào)區(qū)間和值域的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)隨機變量ξ~N(5,32),則可知3ξ-5~N(10,272).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.計算lg$\sqrt{5}$+lg2•log3$\sqrt{3}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC,邊a,b,c的對角分別為A,B,C,tanC=$\frac{sinA+sinB}{cosA+cosB}$.
(1)求角C的大小;
(2)若c=$\sqrt{3}$,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校高一年級學(xué)生全部參加了體育科目的達(dá)標(biāo)測試,現(xiàn)從中隨機抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖(如圖)

(Ⅰ)體育成績大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級有1000名學(xué)生,試估計高一年級中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時的體育活動情況,現(xiàn)從體育成績在[60,70)和[80,90)的樣本學(xué)生中隨機抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在[60,70)的概率;
(Ⅲ)假設(shè)甲、乙、丙三人的體育成績分別為a,b,c,且分別在[70,80),[80,90),[90,100]三組中,其中a,b,c∈N.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時,寫出a,b,c的值.(結(jié)論不要求證明)
(注:s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若如圖框圖所給的程序運行結(jié)果為S=41,則圖中的判斷框(1)中應(yīng)填入的是( 。
A.i>6?B.i≤6?C.i>5?D.i<5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域為,若對任意,當(dāng)時,都有,則稱函數(shù)上為非減函數(shù).設(shè)函數(shù)上為非減函數(shù),且滿足以下三個條件:①;②;③.則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}滿足:a1+a2+a3+…+an=n-an(n∈N*).
(Ⅰ)求a1,an;
(Ⅱ)若bn=n(2-n)(an-1),且對任意的正整數(shù)n,都有bn+$\frac{1}{4}$t≤t2,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法錯誤的是( 。
A.零向量與任意向量平行B.零向量的方向是任意的
C.零向量是沒有方向的向量D.零向量只能與零向量相等

查看答案和解析>>

同步練習(xí)冊答案