精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點,求線段EC的范圍.

【答案】
(1)解:在△ABC中,∵(2﹣cosA)tan =sinA,a+b=4,

∴(2﹣cosA) =sinA,

即2sinC=sinA+sinAcosC+cosAsinC=sinA+sinB,

∴由正弦定理可得:2c=a+b=4,

∴c=2.


(2)∵c=2,E為AB的中點,

∴由余弦定理可得:CE2=AE2+AC2﹣2AEACcosA=a2+1﹣2acosB,

CE2=BE2+BC2﹣2BEBCcosB=b2+1﹣2bcosA,

∴兩式相加可得:CE2= ,

又∵cosB= ,cosA= ,a=4﹣b,

,

又∵

∴1<b<3,


【解析】(1)由已知利用半角公式化簡條件式子,再根據正弦定理結合已知即可解得c的值。(2)利用已知以及余弦定理可得出 ,再結合可得出b的取值范圍,利用二次函數的性質即可解出 C E的范圍。
【考點精析】根據題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量n

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計算數列{2n1}前5項的和
B.計算數列{2n﹣1}前5項的和
C.計算數列{2n1}前6項的和
D.計算數列{2n﹣1}前6項的和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC中,角A,B,C所對的邊分別為a,b,c,則“∠C>90°”的一個充分非必要條件是(  )
A.sin2A+sin2B<sin2C
B.sinA= ,(A為銳角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著霧霾日益嚴重,很多地區(qū)都實行了“限行”政策,現從某地區(qū)居民中,隨機抽取了300名居民了解他們對這一政策的態(tài)度,繪成如圖所示的2×2列聯表:

反對

支持

合計

男性

70

60

女性

50

120

合計


(1)試問有沒有99%的把握認為對“限行”政策的態(tài)度與性別有關?
(2)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的居民(人數很多)中隨機抽取3人,用ξ表示所選3人中反對的人數,試寫出ξ的分布列,并求出ξ的數學期望.
K2= ,其中n=a+b+c+d獨立性檢驗臨界表:

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3 圍成的區(qū)域,若向區(qū)域Ω上隨機投一點P,則點P落入區(qū)域A的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE,設PA=1,AD=2.

(1)求平面BPC的法向量;
(2)求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

同步練習冊答案